
This is a post-peer-review, pre-copyedit version of an article published in the International
Journal of Information Security. The final authenticated version is available online at:
https://doi.org/10.1007/s10207-018-0414-4

Dynamic Searchable Symmetric Encryption for Storing
Geospatial Data in the Cloud

Benedikt Hiemenz · Michel Krämer

Abstract We present a Dynamic Searchable Symmet-

ric Encryption scheme allowing users to securely store

geospatial data in the cloud. Geospatial data sets often

contain sensitive information, for example, about ur-

ban infrastructures. Since clouds are usually provided

by third parties, these data needs to be protected. Our

approach allows users to encrypt their data in the cloud

and make them searchable at the same time. It does not

require an initialization phase, which enables users to

dynamically add new data and remove existing records.

We design multiple protocols differing in their level of

security and performance respectively. All of them sup-

port queries containing boolean expressions, as well as

geospatial queries based on bounding boxes, for exam-

ple. Our findings indicate that although the search in

encrypted data requires more runtime than in unen-

crypted data, our approach is still suitable for real-

world applications. We focus on geospatial data storage,

but our approach can also be applied to applications

from other areas dealing with keyword-based searches

in encrypted data. We conclude the paper with a dis-

cussion on the benefits and drawbacks of our approach.

Keywords Cryptography · Private Information

Retrieval · Geographic Information Systems · Cloud

Computing

B. Hiemenz · M. Krämer
Technische Universität Darmstadt, Darmstadt, Germany

M. Krämer
Fraunhofer Institute for Computer Graphics Research IGD
Darmstadt, Germany
Tel.: +49-6151-155 415
Fax: +49-6151-155 444
E-mail: michel.kraemer@igd.fraunhofer.de

1 Introduction

In recent years, more and more companies have started

to outsource data and computations to the cloud. They

expect many benefits from doing so. A cloud infrastruc-

ture allows for a worldwide data access and other bene-

fits such as scalability and elasticity. Such an infrastruc-

ture is mostly provided by third parties. This is a big

economic advantage for many companies which can in-

termittently adjust their storage requirements without

further hardware costs. Besides that, cloud providers

often offer computation time with which customers are

able to deploy and run their products in the distributed

environment of the cloud provider. This enables a flexi-

ble resource management because companies can again

scale the offered services at any time. By outsourcing

data and computations, companies also partially hand
over their responsibilities to the cloud provider which

(depending on the contract) is put in charge of impor-

tant aspects such as backup management and availabil-

ity.

On the downside, companies lose control over their

own data by outsourcing them. Cloud providers usually

have full access to data stored in their infrastructure.

Moreover, many cloud providers have several data cen-

ters around the world. Since companies are not always

allowed to choose where their data will be stored, they

may face problems with local law regulations. European

companies, for example, are bound to EU law and must

not outsource confidential data like personal ones to

data centers outside the EU without ensuring that the

foreign cloud provider complies with EU principles (see

Article 45, EU-GDPR [5]).

A common way to secure data in an untrustwor-

thy system (e.g. one provided by a foreign cloud pro-

vider) is to apply cryptographical protection such as

encryption. However, encryption negates many advan-

2 Benedikt Hiemenz, Michel Krämer

tages that have been advertised by cloud providers in

the first place. Most forms of computation are much

more difficult to accomplish if they have to operate on

encrypted data. The storage itself causes problems, too.

In case their data are encrypted, owners are no longer

able to search them. Queries on encrypted data are chal-

lenging if you do not want to break the encryption or

run the search locally on the owner’s side. In addition,

the query itself can leak sensitive information about the

data.

Searching encrypted data without leaking the query

is a growing field in cryptography. Several approaches to

this topic have been published in the last decades. The

most promising one is called Searchable Symmetric En-

cryption (SSE), because it is the only existing approach

achieving runtimes that are suitable for real-world ap-

plications. SSE allows data owners to make their en-

crypted documents searchable. This does not include

a full-text search but works on a keyword-based tech-

nique. Owners tag their documents with any number of

keywords and store all associations in an index. Later

on, they are able to search for certain documents based

on their associated keywords. The index and the docu-

ments can be stored safely in the cloud as both are en-

crypted. Not only the index and documents are secured,

but also the query leaks minimum information. Use

cases for SSE exist in many areas. A simple but popular

example are emails since they are almost always stored

on the provider’s infrastructure nowadays. Emails of-

ten contain confidential information. They should be

secured but remain searchable at the same time. SSE

can be a reasonable solution in such a scenario.

In this paper, we are not focusing on emails but

another use case: geospatial data. This type of data

describes regions, urban areas, etc. and can include a

high level of detail such as information about streets

or buildings. Depending on the project, these data are

confidential and must be secured before they are out-

sourced to the cloud. Geospatial file stores are opti-

mized for this type of data. An example for such an ap-

plication is GeoRocket [8]. It is optimized for geospatial

files, provides high-performance data storage, and sup-

ports several cloud infrastructures as back-end storage

(such as Amazon S3). All data in GeoRocket are stored

in plaintext. This setting has to be improved to provide

a suitable environment for confidential data.

1.1 Contribution

Making encrypted data searchable is not bound to a

particular data type, but knowledge about the file’s

structure can be an advantage as we will see in the

course of this paper. Our design adapts some techniques

from existing SSE approaches [11, 17] and is inspired

by previous work from Cash et al. [1, 2] but is specifi-

cally optimized towards our requirements for geospatial

data storage (i.e. structured data including attributes

that need to be searchable) and the spatial queries we

need to perform. The way we apply SSE to cloud-based

data storage based on structured files that can be split

into chunks, in combination with the kind of queries

our system supports, is novel.

We focus on performance and usability, which means

our search is fast and transparent to the user. Our eval-

uation shows that we leak more information compared

to related projects and thereby our approach is more

vulnerable to certain kinds of attacks such as statisti-

cal ones. We define this leakage and describe its con-

sequences. The leakage is acceptable to us because of

two reasons. Our system provides enough security to

resist several kinds of attacks and is hence suitable for

many scenarios. Furthermore, we demonstrate that al-

terations may provide a higher level of security but are

only temporary and dramatically increase the search

time or reduce the usability. Our SSE system supports

parallel processing which improves the performance. On

the client side, we assume nothing more than crypto-

graphic keys. Therefore, our approach facilitates multi-

device support and can easily be ported to clients with

limited memory. We support boolean expressions and

range queries. The latter are used to search for geospa-

tial data using bounding boxes (an area specified by four

coordinates minX, minY, maxX and maxY).

SSE is based on an inverted index and in this paper,

we particularly focus on index encryption. The actual

geospatial data are stored in the cloud using symmet-

ric encryption with a traditional cipher scheme such as

AES.

1.2 Outline

The structure of this paper is as follows: Section 2 sum-

marizes research related to our work. We compare our

approach to others and explain why our techniques are

more applicable regarding our requirements. Some of

these works use SSE, but others achieve searchable en-

cryption with different approaches.

Section 3 describes GeoRocket, the software we im-

plement our SSE system in.

In Section 4 we introduce the concept of our SSE

system. In Section 5 we focus on index security and ex-

plain how users can create an encrypted database with

keyword/document association and run private queries

against it to search their data.

After the theoretical part we give an overview of our

implementation work in Section 6. Section 7 evaluates

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 3

our implementation. We present several benchmarks to

report on performance and to compare our operations

with their unencrypted counterparts. We conclude this

paper in Section 8 and give an outlook on future work.

2 Related Work

This section outlines research related to the work done

in this paper. We summarize SSE-based approaches and

other techniques handling private queries on encrypted

data.

2.1 SSE-based Approaches

The first paper introducing SSE was published by Song,

Wagner and Perrig [16]. The classification of an SSE

system is not clearly defined. Techniques that exclu-

sively combine symmetric encryption with search ca-

pabilities can be summarized as SSE. All systems im-

plementing SSE share some characteristics. They leak

the access and search pattern (see Section 5.1). No ob-

fuscation is applied to hide which (and how many) en-

crypted documents are part of a search outcome. This

does not leak any information about the documents’

content but can facilitate an inference to the queried

keyword. The server learns how frequent the keyword

is in relation to the entire index. Leaking this allows

SSE protocols to deliver the search result to the client

in only one communication step. In addition, the server

is able to detect recurring queries, because the query is

obfuscated deterministically. These weaker security as-

sumptions are one reason why SSE provides such a good

performance in comparison to other approaches, which

on the other hand may provide more privacy. Addition-

ally, SSE techniques accomplish search functionality by

creating an index including keyword/documents associ-

ations. No SSE system operates on the encrypted data

directly. To provide a full-text search, all document’s

words must be part of the index.

In literature, SSE is mostly divided into two ap-

proaches: static and dynamic. Static SSE schemes nei-

ther support the adding of new documents nor the dele-

tion of existing records. An update operation is usu-

ally not possible, too. After initialization, the index is

frozen. As a consequence, users must be in possession

of all documents on startup. This is reasonable in many

scenarios but unacceptable for us. Like most geospatial

file stores, GeoRocket is intended to provide storage

over a long period and it has to be possible to add

or delete documents at any time. In contrast to static

schemes, dynamic ones support adding and deleting.

An SSE index is usually built using key/value data

structures. A different approach is presented by Ka-

mara and Papamanthou [11] who organize the index

in a tree structure. Their search runs in sublinear time

and works in parallel. Users can add more documents

because their index tree is updatable. This is compara-

ble to our approach. Boolean expressions have also been

considered in their paper although their concept is in an

early stage of development. We support boolean expres-

sions. But the work of Kamara and Papamanthou has

one crucial limitation: the universe of keywords must

be known at the beginning and cannot be extended

later. Documents can be easily added but only asso-

ciated with keywords which have been defined by the

user on startup. Therefore, users must either define a

huge set of keywords or guess which keywords could be

interesting in future documents. Our approach does not

have this limitation as we allow for an arbitrary amount

of keywords and can handle unseen ones easily.

Stefanov, Papamanthou and Shi focus on the pro-

cess of adding documents [17]. All dynamic techniques

must deal with a problem leading to information leak-

age: if a single document and its keywords are added

after an initialization phase, it will be obvious for the

honest-but-curious server that these new index entries

belong to the new document. We prevent this by tak-

ing advantage of GeoRocket’s splitting process (see Sec-

tion 3). The GeoRocket Server can only link the index

entries to the entire file not to single chunks. Stefanov,

Papamanthou and Shi also present a general solution

how this leakage can be avoided. Their approach how-

ever is not suitable for us. Client and server run an

extra protocol after each add operation in which the

client downloads parts of the index, re-encrypts it and

sends it back. Shuffling the index results in a fresh state,

where the server cannot identify the recently added

associations anymore. However, their protocol is time-

consuming and requires both parties (server and client)

to stay connected the whole time. It is not user-friendly

to forbid the client to close its session after the ac-

tual add operation is done. They also do not support

boolean expressions but only the search for a single key-

word.

Most papers dealing with SSE focus on two kinds of

index handling. Either all keywords are stored to a par-

ticular document (index) or all documents are stored to

a particular keyword (inverted index). Since SSE pro-

vides a keyword-based search, the latter is faster. We

use an inverted index. A regular index usually causes

linear complexity, because the server must hit each doc-

ument entry to check if it contains the queried keyword.

An inverted index does not need that many hits and can

be sublinear or even optimal/constant. However, the se-

4 Benedikt Hiemenz, Michel Krämer

curity can be stronger in a regular index as shown by

Yavuz and Guajardo [19]. Their approach is dynamic,

provides strong security but only linear runtime, which

is unsuitable for huge data sets.

A combination of both indexing techniques has been

introduced by Hahn and Kerschbaum [10]. Their ap-

proach is based on the observation that the access pat-

tern is leaked once a keyword was part of a query.

The stronger security provided by a regular index is

therefore only temporal. They have designed a proto-

col where the server stores the index regularly at first.

Searches are analyzed and (if necessary) parts of the in-

dex are gradually rebuilt changing to an inverted repre-

sentation. The runtime decreases with each search. We

decided to use an inverted index from the beginning

since the security improvement is only temporal and

rebuilding the index is memory and time consuming.

2.2 Other Approaches

Beyond researches about SSE, a few more approaches

are applicable to search encrypted data. Examples are

fully homomorphic encryption and oblivious random-

access memory. Both are not limited to searching but

can be seen as general-purpose solutions.

Fully homomorphic encryption (FHE) was first pub-

lished by Gentry [7]. His work describes a system al-

lowing everyone to operate on a ciphertext without

knowing the secret key. An example is multiplication:

Enc(a) ∗ Enc(b) = Enc(a ∗ b). FHE is not limited to a

single operation but supports arbitrary ones. Users can

upload encrypted data to a cloud provider, which can
perform any operation on the data without decrypt-

ing them. This makes FHE a promising approach to

enable full-text searches on encrypted data. Unfortu-

nately, FHE requires a lot of performance and runtime

and is yet not fast enough for real-world applications.

Another technique to search encrypted data is obliv-

ious random-access memory (ORAM), which was first

proposed by Goldreich [9] and later revised by Ostro-

vsky [14]. ORAM describes a system where a server pro-

vides storage and allows clients to read and write data

without knowing which location within the store is be-

ing accessed by the client. This is achieved by shuffling

and re-encrypting the data periodically or after each

access. Like FHE, ORAM is not limited to searches in

encrypted data but can also be used for other tasks.

ORAM provides a much higher level of privacy than

SSE as nothing but the overall storage size is leaked.

However, the technique is not practical because of the

long runtime the encryption and searching operations

require.

3 GeoRocket

To evaluate our SSE system, we implement it as an ex-

tension to GeoRocket [8]. GeoRocket is a data store for

geospatial files, which is able to store 3D city models

(e.g. CityGML), GML files or any other data sets in the

formats XML or GeoJSON. It can be configured to use

the local file system as storage back-end or to access

a distributed service such as Amazon S3, MongoDB,

HDFS, or Ceph. Although each back-end has advan-

tages, privacy could be an issue in case an external data

store service is used because the provider might not be

trustworthy. GeoRocket is hence a good example for the

aspects we described in our introduction.

GeoRocket has an asynchronous, reactive and scal-

able software architecture, which is depicted in Fig-

ure 1. The import process starts in the upper left corner.

Every imported file is first split into individual chunks.

Depending on the input format, chunks have different

meanings. 3D city models stored in the CityGML for-

mat, for example, are split into cityObjectMember objects

which are typically individual buildings or other urban

objects. The data store keeps unprocessed chunks. This

enables users to later retrieve the original file they put

into GeoRocket without losing any information.

Attached to each chunk is metadata containing ad-

ditional information describing the chunk. This includes

tags specified by the client during the import, automat-

ically generated attributes and geospatial-specific ones

File

Splitter

Data store

Indexer(s)

Index

Merger

File

ChunkChunk Chunk Chunk Chunk...
Metadata

... ...

Fig. 1 The software architecture of GeoRocket

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 5

such as bounding boxes or the spatial reference system

(SRS). Immediately after the chunks are put into the

GeoRocket data store, the indexer starts working asyn-

chronously in the background. It reads new chunks from

the data store and analyses them for known patterns.

It recognizes spatial coordinates, attributes and other

content.

The export process starts with querying the indexer

for chunks matching the criteria supplied by the client.

These chunks are then retrieved from the data store

(together with their metadata) and merged into a result

file.

The index is maintained by Elasticsearch [4]. In-

dexed data are searchable using a flexible query lan-

guage. Users can combine any number of keywords with

AND, OR, NOT terms allowing them to create nested

queries. Some special expressions are also supported.

Four numbers separated by a comma, for example, are

compiled to a query specifying a bounding box. The

following string is compiled to a query for all chunks

containing the attribute (or tag) Building located inside

the given bounding box (denoted by four numbers):

AND(Bu i l d i n g 13 . 378 , 52 . 515 , 13 . 380 , 52 . 517)

Several operators can be combined to build more

complex queries such as the following one:

AND(OR(Bu i l d i n g Tree)
NOT(13 . 3 78 , 5 2 . 5 15 , 1 3 . 3 80 , 5 2 . 5 17))

This query would result in all chunks containing the

attributes (or tags) Building or Tree but which are not

located in the given bounding box. The default operator

is OR. If no operator is specified GeoRocket will search

for all chunks matching any of the given criteria.

The application is written in Java and includes two

parts, GeoRocket Server and GeoRocket CLI. All tasks

described above are handled by the server. Once data

are imported, the server splits, stores and indexes them.

Furthermore, queries are executed on the server side

to find and return chunks that match the search crite-

ria. The other component is a Command-Line Interface

(CLI) that runs on the client side. Using the CLI, users

can interact with the server and execute commands to

import, export, search and delete files or chunks.

4 Searchable Symmetric Encryption

As mentioned before, SSE systems are characterized by

symmetric encryption combined with search capabili-

ties. All of them have a similar procedure. First, users

create an index of all documents they want to search

for later. The index contains keyword/document asso-

ciations showing which documents and keywords are

linked. Both are obfuscated in some way. In addition,

users encrypt the documents with a traditional cipher

scheme such as AES. The index and documents can

now be sent to the cloud. Later on, users are able to

run a private search including the keyword they are in-

terested in. Querying the index results in a collection of

document identifiers indicating which of the encrypted

documents matches the queried keyword. Finally, the

users receive these encrypted documents and decrypt

them locally.

Our SSE system involves a client and a server. We

assume that the client is controlled by a user and en-

tirely trustworthy. The server is honest-but-curious and

located in the cloud. Our index uses a key/value data

structure to store pairs including the keyword as key

and a list of document identifiers as the corresponding

value. Figure 2 shows the components of our SSE sys-

tem. The client interacts with the server, which stores

an encrypted index and a collection of encrypted docu-

ments. The documents are linked to their corresponding

index entries via an identifier. In contrast to most SSE

approaches, we do not distinguish between an initial-

ization step and following operations. We assume an

empty store as a starting point and allow users to add

documents at any time. Our security assumption does

not depend on the time a document is added. The first

document is as secure as the second, third, etc.

Depending on the environment, it can be benefi-

cial to address the encryption of documents and the

index separately, for example, if users store their en-

crypted documents at one cloud platform, and store and

query the index on another. The cloud platform for the

documents can be optimized for data storage and the

other to support computations and to perform queries.

In case the index and documents are maintained sep-

Client

Server

Documents

id1

Index

keyword1

keyword2 [id1, id2]

[id1, id2, id3]

Fig. 2 Involved parties in SSE: client and server storing an
encrypted index and encrypted documents

6 Benedikt Hiemenz, Michel Krämer

arately by different providers that do not share infor-

mation with each other, the security will increase, too.

Both providers interact with the client only and do not

need any information about each other. The server re-

sponsible for the document storage does not need to

know anything about keywords. The server responsible

for the index does not need to know anything about

the documents but their identifiers. Our protocol does

not specify whether these two tasks are fulfilled by one

or two cloud providers. If the protocol is running be-

tween a client and two providers, both are considered

honest-but-curious.

Static SSE systems benefit from the fact that all

documents must be available on startup. Adding a new

document to the index leaks some information about

it—for example the number of keywords the new doc-

ument is associated with. If the server retrieves only

one document, it is obvious that all keywords received

in the same add operation must belong to this docu-

ment. Static techniques are not affected by that, be-

cause the server gets all keyword/documents associa-

tions at once and (in most protocols) cannot distinguish

between particular documents. The only leakage is the

sum of documents and keywords. We have multiple op-

tions to avoid this in dynamic approaches. This leak-

age is weakened in case the client sends more than one

document at the same time. Most protocols—including

ours—support this. The client is responsible to shuffle

the new index entries before sending them to the server.

In case two documents are added in the same process,

the server should not assume that the first part of the

index entries belongs to the first received document.

This technique expects the client to always send mul-

tiple documents and makes the security depend on it.

The more documents are added in one process the less

obvious it is for the server to detect which keywords

belong to which document.

Another option is to generate random keywords and

use them as fake entries. This prevents the server from

determining the number of keywords associated to a

document because only the client can distinguish be-

tween a fake and a real keyword. This solution causes

further issues like how many fake entries should be

generated and how much storage and performance is

wasted because of that.

We can take advantage from our focus on geospa-

tial files and GeoRocket’s import process which splits

structured files into separate chunks (e.g. a file contain-

ing a 3D city model is split into individual buildings).

Although users import files to GeoRocket, the chunks

are stored and not the original file. Our keyword-based

search focuses on chunks, too. A search result contains

all chunks matching the queried keyword merged into

a single file. The keywords are mostly generated by

the GeoRocket indexing process which operates on each

chunk separately. Only user-specific tags are associated

with all chunks. Therefore, when we talk about docu-

ments, we do not talk about files but about chunks.

Our add operation automatically includes several

documents, because geospatial files are likely to consist

of multiple chunks. The server only learns how many

keywords are associated with the entire file, not with a

particular chunk.

In the next section, we introduce a technique to se-

cure the index and support complex but private queries

which do not leak information about keywords. Our

approach is evaluated afterwards and discussed in the

context of several extensions which provide a higher se-

curity but increase the runtime and impact usability.

5 Index Security

We start this section with some security definitions that

are important in the context of SSE (see Section 5.1).

Afterwards we focus on single keyword search exclu-

sively. We describe our protocol, which does not in-

clude an initialization but starts with an empty data

store and index. Users are able to add documents and

tag them with an arbitrary number of keywords. Addi-

tionally, we offer search and delete operations. Both are

working keyword-based which means that users specify

a single keyword in a request to get or delete all docu-

ments that are associated with the queried keyword. We

present two protocols supporting single keyword search.

The first one—named the basic protocol—leaks more

information to the server but achieves a good perfor-

mance. It is described in Section 5.2. The second pro-

tocol improves the security, but the runtime of all op-

erations increases. We present this extended protocol in

Section 5.3.

We also cover boolean expressions as we embed the

Basic Cross-Tags (BXT) and the Oblivious Cross-Tags

(OXT) protocol [1] in Section 5.4. This allows us to

support the operators AND and NOT. We focus on

the add and search operations. The delete operation of

BXT and OXT is beyond the scope of this paper. Al-

though the main part of our protocol is not exclusively

designed for GeoRocket, we sometimes take advantage

of certain GeoRocket characteristics or discuss a limi-

tation regarding the software.

Note that in this paper we focus on describing an ap-

proach for encrypting the index. The actual chunks (or

documents) stored in the cloud are encrypted symmet-

rically using a traditional cipher scheme such as AES.

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 7

5.1 Security Definitions

The more information is leaked the more the honest-

but-curious server is able to draw conclusions about

the plaintext of either the data or the query or both.

However, not every leakage causes a comprehensive se-

curity break. Sometimes it can be acceptable to reduce

the security in order to improve other aspects such as

the performance of a system. It is important to know

what information is leaked, who could get access to it

and what the consequences could be. The following def-

initions are widely used, not only in the context of SSE

but also for other techniques achieving searchable en-

cryption.

Search Pattern. Leaking the search pattern allows the

server to detect recurring keyword searches. Although

the server is not able to learn the keyword (because it is

usually obfuscated), the query can be saved and com-

pared with queries in the future. If the server knows

that a client has been searching for the same keyword

in earlier queries, the search pattern is leaked. SSE

schemes (including ours) usually leak the search pat-

tern.

Access Pattern. The access pattern describes the leak-

age of a search outcome. After a query has been exe-

cuted, the server is able to learn how many and which

(encrypted) documents are part of the response and

therefore that theses documents are associated with the

queried keyword. This information is not leaked at the

time of adding new documents but as soon as the client

searches for them. If this kind of information can be

learned by the server, the access pattern is leaked. The

location of documents the client wants to access is not

secured against an honest-but-curious server.

Forward Privacy. The moment a query (consisting of

a single keyword) is executed, the server learns which

documents are associated to that particular keyword

(access pattern). This information can be extracted by

the search outcome. Assuming a user has run several

searches in the past, forward privacy is ensured if the

server does not know that a newly added document is

associated with keywords which have been part of a

query in the past. A system provides forward privacy

in case the server cannot relate a keyword of a new

document with anything known. Even if this particular

keyword already exists in the index and even if the user

has searched for it before.

Backward Privacy. Backward privacy concerns docu-

ments being deleted instead of newly added ones. In

case a query (consisting of a single keyword) is exe-

cuted, backward privacy is ensured if the server does

not know that the queried keyword is associated with

documents which are already deleted. At the time of

searching, the server does not learn anything in retro-

spect about the keyword association of documents that

are no longer part of the index.

5.2 Basic Protocol

We start with an SSE protocol covering single keyword

searches only—we add support for boolean expressions

later (Section 5.4). We describe the protocol steps client

and server must follow to make encrypted documents

searchable. Our approach adapts a few concepts from

Cash et al. [2]. However, both techniques are only partly

comparable. Their approach provides an initialization

phase and distinguishes between documents added in

the setup phase and those added later on. Security and

performance can therefore differ from document to doc-

ument. We do not make such distinction because we do

not assume users are in possession of all documents on

startup. The supported features also differ as we sup-

port range queries (for bounding boxes) and they do

not. However, both approaches use a similar obfusca-

tion technique to mask index entries (except coordi-

nates referring to range queries).

We support three operations: add, search and delete.

All of them require interaction between the client and

server. Several cryptographic keys are required on the

client side to perform these operations. The server does

not need any keys.

5.2.1 Add Operation

Our store is empty at first and we do not have an ini-

tialization step. Users are able to add documents im-

mediately and constantly. The client reads one or more

files as input and creates two collections. One includes

all encrypted documents the other one contains the en-

crypted index entries. The server receives the two col-

lections from the client.

As first step of the add operation, the client iterates

through the file to be added and extracts its chunks.

Each chunk represents a document in the context of

SSE. In the following, we use the term document for a

consistent terminology. The client generates a unique

identifier for each document, because not the file but

documents must be addressable. This identifier must

not be related to the document’s content as the server

learns it later on. The client encrypts the document

8 Benedikt Hiemenz, Michel Krämer

Key kAES , kPRF , kOPE

C o l l e c t i o n i n d e x E n t r i e s
C o l l e c t i o n documents

f o r each document i n f i l e , do :
documentID = I d e n t i f i e r ()

// en c r yp t document
encDocument = Enc (kAES , document)
encDocument . a t t a ch (documentID)
documents . add (encDocument)

// i ndex s e c u r i t y
f o r each keyword , do :

i f keyword i s o f type bounding box
obfuscatedKeyword = (OPE(kOPE , minX) , OPE(kOPE , minY) , OPE(kOPE , maxX) ,

OPE(kOPE , maxY))
e l s e

obfuscatedKeyword = PRF(kPRF , keyword)

enc r yp ted ID = Enc (kAES , documentID)
i n d e x E n t r i e s . append (obfuscatedKeyword , enc r yp ted ID)

i n d e x E n t r i e s . s o r t ()
sendToCloud (documents)
sendToCloud (i n d e x E n t r i e s)

Listing 1 Single keyword search: add operation on the client side. Basic protocol.

with traditional cipher schemes such as AES. In addi-

tion, the identifier is attached to the encrypted docu-

ment. The client then puts the ciphertext into the cor-

responding collection which will be sent to the server

in the end.

The next step concerns the document’s keywords.

For our protocol, it does not matter whether a keyword

has been defined by the user or if the client selects spe-

cial words from the document as such. We assume that

a set of keywords exists for each document. The client

iterates through this set and generates a pair for each

one. One value is an obfuscation of the keyword itself,

the other one is the encrypted identifier of the document

currently handled. The obfuscation technique depends

on the keyword’s type. We use a pseudorandom func-

tion (PRF) with a cryptographic key and the keyword

as input. Because of its underlying cryptographic char-

acteristics, the PRF output is indistinguishable from a

random string and the server cannot reconstruct the

keyword. Additionally, performing a PRF provides a

good performance as it is not time-consuming.

To support range queries (for bounding boxes), we

need a special handling of keywords that represent co-

ordinates. The obfuscation technique must allow the

client to preserve the numerical order of the coordi-

nates so the server is able to handle range queries. A

few techniques are suitable to deal with this issue. We

use OPE to support range queries. OPE is an sym-

metric encryption scheme preserving the numerical or-

der of the plaintext. It is defined as ∀a, b ∈ N :

a < b → f(a) < f(b) with an OPE function f . The

codomain of f must be greater than its domain so

∀A,B ∈ N : |A| < |B| for f : A → B. By pre-

serving the order, OPE supports efficient range queries

on encrypted data. The keyword obfuscation is always

the same because PRF and OPE work deterministically

and we do not append any random input.

To encrypt the document identifier for the index,

the client uses traditional cipher schemes such as AES.

Because we generate a fresh Initialization Vector (IV)

each time, the resulting ciphertexts vary even if the

same plaintext is encrypted twice. Therefore, cipher-

texts are unique and multiple of them can refer to the

same identifier. The pairs of keyword/identifier (both

obfuscated or encrypted) are put into another collec-

tion.

After all documents have been traversed, the client

holds two collections. One includes all keyword/docu-

ments associations, another stores the encrypted doc-

uments (with the corresponding identifier attached in

plaintext). The former collection must be sorted lexi-

cographically to hide the order in which the keywords

have been added. In the end, two collections are sent to

the cloud. On the server side, the add operation does

not need much effort. The server receives both collec-

tions and stores them. If two providers are used in this

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 9

protocol, the client sends the collection respectively to

their responsibilities. Table 1 shows an index with six

documents and three keywords (including one bounding

box consisting of four numbers minX, minY , maxX,

and maxY). As mentioned before, each Enc(idi) dif-

fers even for the same i. The keywords are obfuscated

deterministically and can therefore be merged.

Obfuscated Keyword Encrypted Identifier
PRF(keyword1) Enc(id1), Enc(id2),

Enc(id3), Enc(id4)
PRF(keyword2) Enc(id2), Enc(id4),

Enc(id5)
(OPE(minX), OPE(minY),
OPE(maxX), OPE(maxY))

Enc(id6)

Table 1 Encrypted index

Our add operation requires only one communica-

tion round and is time-consuming on the client side. We

require some cryptographic transformations, including

the document encryption and the PRF or OPE genera-

tion for the keywords. Because the data is encrypted we

cannot outsource these operations to the server, which

would actually be responsible for building the index.

The client needs three different keys for the add op-

eration. One for the AES encryption, another for OPE

and the last for PRF. If more files should be added at

once, the documents and index entries can be sent as a

joint request respectively. It is not necessary to create

two new collections for each file. Using only one instance

of both is highly recommended because it prevents the

server from distinguishing which keyword/documents

association belongs to which file. The pseudo-code in

Listing 1 illustrates our protocol to add documents to

the store and summarizes the steps above.

5.2.2 Search Operation

Figure 3 illustrates our search operation. We only sup-

port the search for a single keyword for now. The client

regenerates the PRF result of the keyword to search

for. Since PRFs are deterministic as long as the same

key and keyword are used, the result matches the index

entry on the server side (if the keyword exists in the in-

dex). The client sends the PRF output to the server 1 .

If an entry is found, the server responds with a list of

encrypted identifiers corresponding to the PRF output

2 . The client decrypts them and filters out duplicates

(in case some encrypted identifiers refer to the same

plaintext). The resulting set of identifiers is sent back

to the server 3 which then returns the documents 4 .

Since these are still encrypted, the client decrypts them

as the last step. At the end, the client has all documents

associated with the queried keyword.

Client Server

PRF(keyword)1

[Enc(id1), Enc(id2), Enc(id3), ... , Enc(idi)]2

[id1, id2, id3, ... , idi]3

Enc(search_outcome)4

decrypt

get
documents

get
identifiers

decrypt

Fig. 3 SSE search protocol between client and server

To run range queries, the client encrypts the desired

coordinates with OPE and sends the ciphertext to the

server. Since OPE works deterministically, the cipher-

text is the same as during the add operation. To query a

valid bounding box, the client must specify all four co-

ordinates (minX, minY, maxX, maxY). Furthermore,

the client sends information whether it is interested

in documents whose bounding boxes are intersecting

with its input or not. Due to the order preserving, the

server can look up all ciphertexts whose bounding box

matches the search criteria by comparing whether the

coordinates are respectively lower or higher.

Unlike our add operation, searching requires two

communication rounds. The server cannot handle the

encrypted identifiers, only the client is able to work on

them. This increases our security because the server

cannot draw inferences from identifiers to their obfus-

cated keywords. For example, the server cannot count

the number of (obfuscated) keywords each document is

associated with.

5.2.3 Delete Operation

Our last operation is similar to our search and han-

dles the deletion of documents. We provide a keyword-

oriented delete operation hence users cannot remove a

certain document but all documents related to a single

keyword. At first, the client generates the keyword’s

PRF result and sends it to the server. If an entry to

this value exists in the index, the server responds with

a list of corresponding encrypted identifiers. Addition-

ally, the server deletes the row in the index. The client

receives the list and decrypts the identifiers. Finally, it

makes a request to the server instructing it to delete

these documents from the store. Deleting documents

based on an OPE query works similarly.

Our deletion is not complete as some pieces of data

remain on the index. Table 2 shows the problem.

10 Benedikt Hiemenz, Michel Krämer

Obfuscated Keyword Encrypted Identifier
PRF(keyword1) Enc(id1), Enc(id2),

Enc(id3), Enc(id4)
PRF(keyword2) Enc(id2), Enc(id4),

Enc(id5)
(OPE(minX), OPE(minY),
OPE(maxX), OPE(maxY))

Enc(id6)

Table 2 Encrypted index after a delete operation. Deleted
entries are crossed out. Orphaned identifiers are highlighted.

If the client sends PRF(keyword1) to the server as

part of a deletion request, the corresponding row is

deleted from the index as well as documents id1, id2,

id3, id4 from the store. However, the row of the ob-

fuscated keyword PRF(keyword2) still contains cipher-

texts whose respective plaintext refers to documents

that do not exist anymore (orphaned id2 and id4). This

affects only the index not the document storage. On the

next search request for PRF(keyword2), the server re-

sponds with Enc(id2), Enc(id4), Enc(id5) not knowing

that id2 and id4 have been deleted in the past. This

does not break our procedure. The client decrypts the

response and sends id2, id4, id5 back to the server which

replies with an error for id2 and id4 and hence sends

only one encrypted document back. Nevertheless, the

search is perfectly valid, but we wasted some traffic and

cryptographic operations for outdated identifiers.

During the delete operation, we cannot remove all

encrypted identifiers correctly without a huge perfor-

mance loss. The server would have to send the entire

index so the client can decrypt all entries and mark ev-

ery ciphertext referring to a document to be deleted.

This is neither scalable nor practical. A more promis-

ing option is cleaning the index gradually. Whenever a

search is running, the client caches the encrypted iden-

tifiers it has received from the server. If the server then

indicates that one of the requested documents has been

deleted, the client is able to show the server which en-

tries can be removed within the index. This way, we do

not delete everything directly but distribute the load of

the client to several steps over time. One more commu-

nication round is required for our search operation as

the client sends a list of outdated encrypted identifiers

to the server after a query is complete.

5.2.4 Discussion

Our protocol is optimized to achieve a good perfor-

mance. Due to our inverted index, the server must hit

the index only once to look up all entries for a key-

word. The used cryptographic operations are known for

their low runtime and are thus practical. We require one

communication round to add documents and two for a

delete or search operation (three in case of our grad-

ually index cleaning). Except update capabilities, we

support everything a dynamic SSE approach requires.

Therefore, users do not have to be in possession of all

documents on startup but can add and delete records

at any time. Our SSE system does not support multi-

reader or multi-writer features because only the client

is in possession of the keys. Read and write permissions

are therefore exclusively permitted to the owner.

Besides the search for words, our protocol supports

range queries allowing the client to run bounding box-

related query. In addition, our protocol allows for paral-

lel execution. Some SSE approaches (such as [12]) use

a linked list as data structure for the index security.

This technique may have advantages but also forces a

sequential process as the entries can only be accessed

one after another. Because our data access is not bound

by a linked list, we do not suffer from a sequential pro-

cedure. The system is user-friendly as our protocol runs

transparently to the user. No operation requires an ex-

tra step users would have to care about. The keys can

be generated and handled in the background, no set-

tings require the user’s attention. The client is allowed

to close the session immediately after an operation is

done. Neither keys nor plaintext leave the client’s sys-

tem. On the client side, we require a keystore (including

three keys) only. No further storage is needed. Our pro-

tocol is therefore suitable regarding multi-device sup-

port. Users must synchronize their devices only once

because the keystore does not change after all keys have

been generated.

On the other hand, we achieve our performance at

the expense of security. The client encrypts the docu-

ment identifiers, so the server is not able to learn if two

keywords are associated with the same document. Tak-

ing an encrypted identifier as starting point, the server

observes no further information, neither if the docu-

ment is associated with another keyword nor how many

keywords it has. Preventing the server from counting is

a good defense against statistical attacks because we

expect the server to be honest-but-curious. Taking a

keyword as starting point, the server however is able

to learn significantly more, which can be shown by our

prior security definitions.

The access pattern is leaked if the server is able to

associate the queried keyword with the search outcome.

This leakage depends on the environment. Our proto-

col contains two communication rounds. The server re-

ceives the queried keyword in one request. However,

the document identifiers are part of a different request.

Leaking the access pattern depends on the server’s ca-

pability to link these two requests. As mentioned be-

fore, our protocol allows the client to interact with two

servers. One is responsible for the index and the other

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 11

is responsible for the document storage. Under the as-

sumption that both servers do not share information

with each other, linking the requests is not likely. There-

fore, the access pattern is not leaked in such a setup.

But in general, our protocol does not ensure that this

kind of leakage is prevented.

Forward privacy is not achieved, because all identi-

fiers associated with a certain keyword are stored in the

same row. The server knows which entries were hit in

the past. If a new document is added, the server learns

whether it is associated to an existing keyword or not.

The main problem regarding forward privacy is that

our keyword obfuscation works deterministically. Using

this setting, a particular keyword can be easily tracked

by the server.

Since we fail forward privacy, we allow the server to

count how many documents are associated with a cer-

tain keyword. The server sums the entries in a particu-

lar row to get this information. We prevent the server

from counting how many keywords a particular docu-

ment has, but not the opposite direction. Counting al-

lows the server to conclude the popularity of keywords,

which facilitates statistical attacks.

Backward security fails for the same reason. Again,

all identifiers to a certain keyword are stored in the

same row. The server is able to detect whether a deleted

identifier was associated with the keyword currently

queried or not. This only involves the ciphertext of iden-

tifiers not their plaintext (which is required to refer to

the actual documents). However, because a delete op-

eration works similarly to a search, the access pattern

can be leaked in the process depending on the environ-

ment. In this case, the server learns which documents

have been identified by the ciphertext.

5.3 Extended Protocol

This section describes an extended protocol that en-

ables forward privacy and hence improves the security.

We will discuss the extended protocol from different

points of view because it also restricts usability and

causes poorer performance.

As described above, the reason why our basic proto-

col fails forward privacy, is the fact that all encrypted

identifiers are stored within the same row in the index.

Using PRF is a good technique to obfuscate keywords.

The client needs little effort to generate the obfuscation

and the server is not able to reconstruct the keyword

based on its PRF result. In addition, nothing but the

key needs to be stored on the client side. PRFs work

deterministically. If we want to make the output dis-

tinct each time, we must add randomness to the input.

Obfuscated Keyword Encrypted Identifier
PRF(keyword1 ‖ 0) Enc(id1)
PRF(keyword1 ‖ 1) Enc(id2)
PRF(keyword1 ‖ 2) Enc(id3)
PRF(keyword1 ‖ 3) Enc(id4)
PRF(keyword2 ‖ 0) Enc(id2)
PRF(keyword2 ‖ 1) Enc(id4)
PRF(keyword2 ‖ 2) Enc(id5)

Table 3 Encrypted index with counter

However, such randomness must be stored and acces-

sible by the client. Otherwise the client has no chance

telling the server which keyword it is interested in be-

cause the client is not able to regenerate the keyword’s

obfuscation that has been generated during the add op-

eration.

Our solution for this problem is inspired by the work

of Cash et al. [2]. In their paper, they pointed out that

only minimum information is required to obfuscate a

keyword more securely. A counter is enough. PRFs are

by definition not related to the input string they were

generated from. Even a slight alteration of the input

results in a completely different output. We make use

of this and initialize a counter for each keyword. We

append the counter to the keyword as part of the PRF

input. Each PRF outcome differs, because the counter

increases.

Our extended protocol works as follows: we initialize

a counter for each keyword. Every time we create a fur-

ther keyword/document pair, the counter is increased

and concatenated to the current keyword. If the client

searches for a keyword, it will get the current counter

value i and calculate PRFc = PRF (keyword‖c) for

c = 0...i.

Our security improves with such a counter. The

server does not know how many documents are asso-

ciated with a certain keyword because all rows con-

tain only one entry now (because the obfuscation is

never the same). Forward privacy is also ensured. If a

new document is added, the counter increases and hides

links between other index entries especially about doc-

uments referring to the same keyword.

Table 3 shows an index of our extended protocol

with five documents and two keywords. We note that

parts of the improvement are only temporal. At the very

moment the client is searching for a certain keyword,

all corresponding PRFs are generated. Sending them

to the server allows for a conclusion which PRF values

in the index are referring to the queried keyword. This

does not affect forward privacy, because a new docu-

ment is still protected by a fresh counter value.

The biggest challenge regarding our counter tech-

nique is storage. Although we do not need to save much

12 Benedikt Hiemenz, Michel Krämer

Obfuscated Keyword Encrypted Identifier
PRF(keyword1 ‖ 0) Enc(id1)
PRF(keyword1 ‖ 1) Enc(id2)
PRF(keyword1 ‖ 2) Enc(id3)
PRF(keyword1 ‖ 3) Enc(id4)
PRF(keyword2 ‖ 0) Enc(id2)
PRF(keyword2 ‖ 1) Enc(id4)
PRF(keyword2 ‖ 2) Enc(id5)

7→
Obfuscated Keyword Encrypted Identifier
PRF(keyword1 ‖ 0) Enc(id1)
PRF(keyword1 ‖ 1) Enc(id3)

Table 4 Encrypted index with counter before and after deletion and reorganization. Deleted entries are crossed out. Orphaned
entries are highlighted.

Obfuscated Keyword Encrypted Identifier
PRF(keyword1) Enc(4)
PRF(keyword1 ‖ 0) Enc(id1)
PRF(keyword1 ‖ 1) Enc(id2)
PRF(keyword1 ‖ 2) Enc(id3)
PRF(keyword1 ‖ 3) Enc(id4)
PRF(keyword2) Enc(3)
PRF(keyword2 ‖ 0) Enc(id2)
PRF(keyword2 ‖ 1) Enc(id4)
PRF(keyword2 ‖ 2) Enc(id5)

Table 5 Encrypted index with counter stored on the server

information, we must store the counters somewhere.

Storing them on the user’s local system causes syn-

chronization problems and affects our multi-device ca-

pability. Alternatively, we can store the counter on the

server side. Doing so, the client receives the current

counter value from the server before the search/delete

or add operation is executed. If there is no counter yet,

the client initializes a new one. The counter increases

during the operations and must be sent back to the

server in the end. Of course, the counter must be en-

crypted before leaving the client. To find its ciphertext

again, we need some kind of identifier. For example,

PRF (keyword) can be used as identifier for the key-

word. The counter therefore starts with 0. Using the

server as counter store allows users to work on mul-

tiple devices as long as the keystore has been shared

once. Overall, we need one more communication round

compared to our basic protocol to get the counter.

Table 5 shows an index with two keywords, their

encrypted counters and five documents. The counters

are stored on the server side. We provide pseudo-code

for an add operation in Listing 2.

The deletion of documents becomes more challeng-

ing. More precisely, our cleaning process to remove out-

dated encrypted identifiers needs further adaptations.

Removing those causes gaps in the counter sequence.

Table 4 shows the problem. Suppose the documents

matching keyword2 (id2, id4 and id5) should be deleted.

The last three entries of the index related to keyword2
will be removed immediately. id2 and id4, however, re-

main as entries of keyword1 (highlighted) but can be

deleted gradually once keyword1 is queried. If this hap-

pens, in order to close the gap between the counter val-

ues 0 and 2, the client needs to reorganize (or reindex)

the encrypted identifiers for keyword1. The client tells

the server to delete all entries from the index related

to keyword1. For each remaining document identifier

id1 and id3, the client creates new obfuscated keywords

PRF(keyword1 ‖ 0) and PRF(keyword1 ‖ 1), and sends

them together with the encrypted identifiers Enc(id1)

and Enc(id3) to the server to insert them into the index.

5.3.1 Discussion

In the previous section we presented an extended ver-

sion of our basic protocol. The security assumptions

about the search and access pattern are the same. How-

ever, our extended version offers forward privacy by

providing a better way to obfuscate keywords. In con-

trast to the basic protocol, the extended one fits appli-

cations where security is more important. On the other

hand, there are also some drawbacks.

The runtime of the extended protocol depends on

the counter. Our basic protocol provides optimal per-

formance. No matter how many documents are asso-

ciated with a certain keyword, it takes one hit to get

them all. Using a counter, however, the server must look

up PRFc = PRF (keyword‖c) for c = 0...i entries. We

note that the counter is never higher as the amount of

stored documents because in the worst case a keyword

is associated with all documents. Due to this, our ex-

tended protocol provides better performance than ap-

proaches that do not use an inverted index.

Note that it is not possible to adapt the counter

technique to the OPE scheme. In contrast to PRF, an

OPE’s ciphertext is related to its corresponding plain-

text and hence altering the input does not result in a

completely different ciphertext. To preserve the order

of OPE ciphertexts, randomness must not be added. In

case coordinates (specifying a bounding box) are key-

words, forward privacy is not ensured.

Using the server as counter store causes another is-

sue. The counter can only be used in a blocking way.

During an add operation, nobody else should have ac-

cess to this value. Otherwise, if two add operations are

running concurrently by the same user but different

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 13

Key kOPE , kAES , kPRF

C o l l e c t i o n i n d e x E n t r i e s
C o l l e c t i o n documents

Map coun t e r s = getCounte r sF romServe r (keywords)

f o r each document i n f i l e , do :
documentID = I d e n t i f i e r ()

// en c r yp t document
encDocument = Enc (kAES , document)
encDocument . a t t a ch (documentID)
documents . add (encDocument)

// i ndex s e c u r i t y
f o r each keyword , do :

i f keyword i s o f type bounding box
obfuscatedKeyword = (OPE(kOPE , minX) , OPE(kOPE , minY) , OPE(kOPE , maxX) ,

OPE(kOPE , maxY))
e l s e

coun t e r = coun t e r s . g e tOrDe fau l t (keyword , 0)
obfuscatedKeyword = PRF(kPRF , keyword | | coun t e r)
c oun t e r s . put (keyword , ++coun t e r)

enc r yp ted ID = Enc (kAES , documentID)
i n d e x E n t r i e s . append (obfuscatedKeyword , enc r yp ted ID)

i n d e x E n t r i e s . appendA l l (e n c r yp tCoun t e r s (c oun t e r s))
i n d e x E n t r i e s . s o r t ()
sendToCloud (documents)
sendToCloud (i n d e x E n t r i e s)

Listing 2 Extended single keyword search: add operation with counter. Changes to our basic protocol are underlined.

clients, the counter cannot be incremented correctly.

Using a counter value more than once would subvert

our security and undo the improvements the counter

has achieved in the first place. Our entire add opera-

tion is therefore blocking. This may be acceptable in a
system like ours where only the data owner can add doc-

uments to the store. It is unlikely that the data owner

adds two documents from different devices simultane-

ously. In a multi-writer system, on the other hand, the

usability will suffer from the fact that only one client

is able to add new documents at a time. This draw-

back is acceptable for now, because our protocol does

not support a multi-writer feature. But in case we in-

troduce such a feature in the long term, this issue must

be considered.

5.4 Boolean Expressions

Besides single keyword searches our system should also

support more complex queries involving multiple key-

words combined by boolean operators (i.e. AND, OR

and NOT). A näıve technique for this task is to perform

the computation on the client side instead of the server

side. For the AND operator, the client runs one search

per keyword independently and receives a collection of

identifiers for each query. The client then calculates the

intersection of all collections.

NOT queries can be performed similarly. The client

sends the keyword to negate and the server replies with

two collections. One includes the identifiers of the key-

word’s search outcome, the other all identifiers from

the index. Again, the client is now responsible to fil-

ter these results by discarding the intersection of both

collections. The OR operation is straight forward be-

cause we perform two keyword searches independently

and combine their results in the end.

This technique has two drawbacks in terms of per-

formance and security of SSE. The server sends a lot

more encrypted identifiers than necessary to perform

the query. Performing any NOT operation, the server

must send the entire index, so the client is able to iden-

tify relevant results. Bandwidth is therefore wasted.

The security concern is even more critical and caused by

the fact that the server learns the complete outcome of

each keyword within a boolean expression. Especially

the AND operation is leaking more information than

necessary if a client searches for two high-frequency key-

words whose conjunction applies to only a small num-

ber of documents. The relation between the result of a

14 Benedikt Hiemenz, Michel Krämer

queried keyword and the final outcome allows the server

to draw conclusions about the query.

A better approach to support boolean expressions

in SSE was published by Cash et al. [1]. Their protocol

is called OXT and provides an effective, yet secure tech-

nique to handle logical operators in SSE queries. The

server does not learn anything about the result of a sin-

gle keyword within a query. We embed the approach of

Cash et al. into our single keyword protocol from the

previous section and adapt it to our requirements and

assumptions.

5.4.1 BXT and OXT

Cash et al. introduce OXT by first presenting an easier

protocol called Basic Cross-Tags (BXT). BXT provides

the same functionality as OXT but leaks a little more

information. Pointing out the leakage’s impact, Cash

et al. leave it to the reading developers to decide which

protocol is more suitable for them. In this section, we

explain their differences and conclude in which scenario

one of them is preferable. Both extend single keyword

search techniques by boolean expressions.

BXT (and OXT) focuses on one logical operator at

a time. An OR operation is the least complex one be-

cause the query is simply split and the searches for both

keywords are performed independently. AND and NOT

however are more complex. To deal with these two op-

erators another piece of information is required. Cash

et al. call it xtag in their protocol. An xtag is a string

which acts as a flag indicating whether a keyword/doc-

ument association exists or not. Its actual content is not

important but its existence. Xtags are generated during

the add operation on the client side and are sent to the

server besides the encrypted documents and index en-

tries. For each keyword/document association an xtag

is created by the client. Its usage however is locked by a

secret, called xtrap. These values ensure that the server

is not able to handle xtags without the client.

Listing 3 illustrates how xtags are generated during

an add operation. The client performs a PRF and uses

its result (the xtrap) as key to run the PRF once more.

The cryptographic key used to generate xtraps must

not be the same as the one used to obfuscate keywords.

Otherwise, the xtrap would be equal to the correspond-

ing obfuscated value stored in the index. All xtags are

sent to the server which stores them besides the index.

The xtraps do not leave the client but are dropped.

Once a search is running, the query is transformed

into a Searchable Normal Form (SNF), which is spec-

ified by the form w1 ∧ Φ(w2, ..., wn) where w1, ..., wn

are the keywords to search for and Φ is an arbitrary

boolean operator. The first keyword w1 is very impor-

Key kBXT

f o r each document i n f i l e , do :
documentID = I d e n t i f i e r ()
f o r each keyword , do :

x t r ap = PRF(kBXT , keyword)
xtag = PRF(xt rap , documentID)

Listing 3 xtag generation for boolean expressions

tant because the search performance highly depends on

it (as we show in Section 7). For the remaining query

Φ(w2, ..., wn), the client regenerates xtraps for w2 to

wn. Xtraps and the regular obfuscation of w1 are sent

to the server. The w1 keyword is handled similarly to a

single keyword search on the server side resulting in a

collection of associated document identifiers. The server

then checks for each identifier if its combination with

all xtraps results in a known xtag or not. Only now is

the server able to handle xtags and only the ones be-

longing to the received xtraps. If the xtrap belongs to

an AND expression, all xtags must exist on the server

side. In case one is unknown, the identifier does not sat-

isfy the AND expression and can be discarded. NOT

expressions work the other way round. If at least one

xtag exists on the server the test will fail. All identifiers

that pass their corresponding check are part of the final

search outcome. Listing 4 shows the xtag check assum-

ing the server has already received the list of document

identifiers from the single keyword search for w1.

Boolean r e s u l t = t r u e

f o r each documentID , do :
f o r each xt rap , do :

x tag = PRF(xt rap , documentID)
i f (x tag e x i s t s on s e r v e r)

i f (Φ i s NOT ope r a t o r)
// NOT e x p r e s s i o n i s f a l s e
// f o r t h i s documentID ,
// because no xtag must
// e x i s t on the s e r v e r
r e s u l t = f a l s e

e l s e
i f (Φ i s AND ope r a t o r)

// AND e x p r e s s i o n i s f a l s e
// f o r t h i s documentID ,
// because a l l x t ag s must
// e x i s t on the s e r v e r
r e s u l t = f a l s e

Listing 4 Boolean expression: xtag check during a search

BXT suffers from a certain leakage motivating Cash

et al. to design OXT as enhancement [1]. Once the

client exposes xtraps as part of a search, the server can

reuse them to test identifiers from previous or follow-

ing queries. The protocol therefore leaks information

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 15

Key kOPE , kAES , kPRF , kBXT

C o l l e c t i o n i n d e x E n t r i e s
C o l l e c t i o n documents
L i s t x t ag s

f o r each document i n f i l e , do :
documentID = I d e n t i f i e r ()

// en c r yp t document
encDocument = Enc (kAES , document)
encDocument . a t t a ch (documentID)
documents . add (encDocument)

// i ndex s e c u r i t y
f o r each keyword , do :

i f keyword i s o f type bounding box
obfuscatedKeyword = (OPE(kOPE , minX) , OPE(kOPE , minY) , OPE(kOPE , maxX) ,

OPE(kOPE , maxY))
e l s e

obfuscatedKeyword = PRF(kPRF , keyword)
x t r ap = PRF(kBXT , keyword)
xtag = PRF(xt rap , documentID)

enc r yp ted ID = Enc (kAES , documentID)
i n d e x E n t r i e s . append (obfuscatedKeyword , enc r yp ted ID)
x t ag s . add (xtag)

i n d e x E n t r i e s . s o r t ()
sendToCloud (documents)
sendToCloud (i n d e x E n t r i e s)
sendToCloud (x t ag s)

Listing 5 Boolean expression: add operation on the client side. Changes to our basic protocol are underlined

across queries allowing the server to learn intersections

between them. OXT extends the protocol by introduc-

ing an alternative to how xtraps are handled. Instead

of revealing all xtraps during a search, client and server

execute a secure two-party computation [18]. This al-

lows two parties to jointly execute a common function

over their inputs without leaking those to the other

party. Both parties can be sure the final result is correct.

Using a secure two-party computation protocol, client

and server can jointly generate xtags without forcing

the client to leak any information about the xtraps of

a query. However, secure two-party computations are

expensive and require several communication rounds.

5.4.2 Integration

In comparison to the assumptions of BXT (and OXT),

we need an extra step to integrate the protocol in our

single keyword search. BXT assumes that the resulted

identifiers are in plaintext as soon as the search for w1 is

finished. Regarding our own protocol, they are not and

must be decrypted by the client first. In our protocol,

this does not cause an extra communication round since

the client sends all decrypted identifiers back to the

server anyway. Listing 5 shows the add operation of our

basic protocol including the xtag generation to support

boolean expressions.

The integration of boolean expressions into our pro-

tocol has a limitation regarding bounding box queries.

BXT and OXT do not support range queries. Xtags

only indicate if a keyword/document association exists

but do not tell anything about the keyword itself. If a

bounding box is part of a boolean expression, it must

always be used as w1 regardless of its frequency. This

implies that only one bounding box can be handled at a

time because we set only one w1 keyword. This affects

our system’s usability only in one case, because our

SSE system is primarily optimized for geospatial file

storage. We have introduced range capabilities to cover

bounding box-related queries. Given that this feature

is exclusively used for this task, we note that a con-

junction of two bounding boxes does not make sense

because if an object is within two bounding boxes, they

blend and their intersection can be used instead. A dis-

junction of bounding boxes is also no issue because in

that case we split the query anyway. The only limita-

16 Benedikt Hiemenz, Michel Krämer

tion are NOT-related expressions. An example would

be if a user specifies a bounding box but wants to ex-

clude a certain section inside (represented by a smaller

bounding box). This kind of queries is not supported.

Generally, we note that only one range query at a time

is supported by BXT and OXT.

Another question is which of our protocols inter-

acts best with BXT and OXT respectively. We have

presented two single keyword protocols in the previ-

ous sections, a basic version and an extension. Theo-

retically, we can combine each with each resulting in

four protocols. Our basic protocol combined with BXT

would achieve the best performance, our extended one

combined with OXT the highest security. The leakage

of one of our single keyword protocols does not neutral-

ize the security of BXT or OXT and vice versa. This

is mainly due to the fact that both operate on differ-

ent data. BXT and OXT deal only with xtrap and xtag,

our single keyword protocols with obfuscated keywords.

Therefore, the security assumptions—such as forward

and backward security—for the single keyword search

are the same as described in the corresponding sections

of our basic and extended protocol.

BXT and OXT limit the delete capabilities of our

protocols. Xtags, which are once created can not be

removed easily on the server side. During a delete op-

eration, the client owns all identifiers referring to docu-

ments that should be removed from the store. Neverthe-

less, the client has no chance to find all corresponding

xtags but only the ones from the current query. If the

documents have been associated with further keywords,

these xtags remain on the server. A technique to delete

all xtags efficiently remains as future work.

6 Implementation

In our theoretical part, we have described four proto-

cols. Two of them focus on single keyword searches

namely our basic protocol and the extended version

with counters. Moreover, we have described two exten-

sions (BXT and OXT) to support boolean expressions

on top of the single keyword searches. The basic proto-

col and BXT as extension for boolean expression sup-

port have been implemented as part of GeoRocket.

6.1 Import Command

The import command refers to our add operation in

SSE. The main work happens on the client side: We

parse the geospatial file and extract relevant keywords

such as user-specific tags and bounding boxes. Each

keyword is associated with a generated unique identi-

fier (UUID [13]) referring to the chunk in the file the

keyword was extracted from. For example, a geospa-

tial file containing a 3D city model is split into chunks

representing individual buildings. Each building gets a

unique identifier and the keywords such as the build-

ing’s street name, the house number, etc. are linked to

it. The keywords are obfuscated using either PRF or

OPE. We use HMAC as PRF algorithm and the OPE

implementation from CryptDB [3]. Identifiers are en-

crypted with AES. Additionally, we generate an xtag

using the keyword and UUID of the current chunk (the

plaintext identifier). The obfuscated keyword and en-

crypted identifier are stored in a map representing our

SSE index. Afterwards, the chunk itself is encrypted

symmetrically using AES, and the UUID is attached as

part of the encryption header. After all elements have

been traversed and all keywords have been found, we

shuffle the list of xtags and the SSE index entries.

Figure 4 shows an overview of the workflow between

client and the server. The client sends the set of en-

crypted chunks and the SSE index 1 to the GeoRocket

server. The server stores the encrypted chunks in the

configured storage backend (e.g. local file system or

Amazon S3) 2 and adds the SSE index to Elastic-

search 3 .

6.2 Search Command

To run a search, users define a query consisting of the

keywords they are looking for. Our support of boolean

expressions includes AND and NOT operators. Nested

queries such as NOT(AND(k1 k2)) are not supported be-

cause their compilation into a usable formula is beyond

the scope of this paper. The client selects a non-negated

GeoRocket CLI

GeoRocket importer/indexer

Storage back-end Elasticsearch

1 Enc(chunks), SSE index

2 Enc(chunks) 3 SSE index

GeoRocket Server

Fig. 4 Workflow of an import command in SSE

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 17

keyword of the query and marks it as the least frequent

keyword. We pick the first one, which can be a bound-

ing box. This special keyword is obfuscated either with

OPE or PRF. The remaining keywords are replaced by

their corresponding xtraps. Of course, the logical oper-

ators stay the same. This information is encoded into a

request and sent to the server. The interaction process

is shown in Figure 5.

The server performs a single search on the least fre-

quent keyword 1 . Doing so, the SSE index is searched

by performing an Elasticsearch query. Its outcome is a

list of Elasticsearch documents that include the obfus-

cated keyword or—in case it was a range query—whose

bounding box matches the search criteria. The server

extracts the encrypted identifiers and sends them back

to the client 2 where they are decrypted and returned

with the remaining query (including the xtraps) 3 .

We avoid the complex secure two-party computation of

OXT as we have implemented the BXT protocol to han-

dle xtraps. The collection of identifiers is tested against

the remaining query. If one generated xtag exists in

Elasticsearch and the xtrap belongs to a NOT opera-

tor, the identifier is dropped. If one generated xtag does

not exist and we deal with an AND operator, the iden-

tifier is also dropped. Filtering the collection, the server

obtains the final search results: a collection of identifiers

referring to chunks that satisfy the query. Since these

identifiers are the UUIDs of chunks and have been in-

dexed during the import process, the server is able to

select them from its file store. The chunks are merged

and the result is sent back to the client which decrypts

it as last step 4 .

6.3 Delete Command

Our delete command is similar to a search. Instead of re-

turning the matching chunks in the last step, the server

GeoRocket
CLI

GeoRocket
Server

PRF(least_frequent_keyword)1

[Enc(id1), Enc(id2), Enc(id3), ... , Enc(idi)]2

[id1, id2, id3, ... , idi] , xtraps3

Enc(search_outcome)4

decrypt

check xtag &
get chunks

keyword
search

decrypt

Fig. 5 Workflow of a search command in SSE

deletes them. Additionally, all Elasticsearch documents

containing the keyword are removed to clean the SSE

index. As mentioned before, xtags cannot be completely

deleted from the server because an efficient deletion

technique for BXT is beyond the scope of this paper.

7 Evaluation

In this section, we evaluate our protocol based on per-

formance measurements. For this, we implemented our

basic protocol with BXT. Test results for the other pro-

tocols are not included in this paper.

We compare the runtime of our import and search

operations regarding encrypted (SSE) and unencrypted

data (non-SSE). We do not evaluate the delete opera-

tion. Deleting a single keyword works similarly to the

search operation. Additionally, as described above, the

delete operation of BXT and OXT is beyond the scope

of this paper. All performance measurements were ex-

ecuted 100 times to avoid getting skewed results due

to fluctuations, and we calculated the mean values ac-

cordingly. We performed the tests with different server

setups. The client, however, ran always on a machine

with the following system specifications:

– CPU: Intel R© Core
TM

i5-6600T @ 2.70GHz × 4

– Memory: 8 GB (2 × 4096 MB)

– OS: Linux, Ubuntu 16.04 LTS 64-bit

– Java Runtime: openjdk-8-jdk (1.8.0 121)

In Section 7.1 we present our results from running

the server on the same machine as the client. In addi-

tion, we set up a number of virtual machines in a cloud

where we deployed the GeoRocket Server, a distributed

MongoDB database storing the chunks as well as a dis-

tributed Elasticsearch index. The results are presented

in Section 7.2.

7.1 Single Machine

The following tests were performed on a machine run-

ning client and server simultaneously. The system spec-

ifications are shown above.

7.1.1 Import

Using our SSE import, the client parses the file and lo-

cates its chunks which are then indexed according to

our protocol. The client obfuscates the keywords via an

OPE or PRF transformation and encrypts the chunks.

The counterpart operation (non-SSE) sends the unen-

crypted file directly as no more steps are necessary on

the client side. We tested several files which are shown

18 Benedikt Hiemenz, Michel Krämer

in Table 6. All of them are real-world datasets from the

open 3D city model of Rotterdam [15] without further

modification. The files differ in their sizes and accord-

ingly have different amounts of chunks (i.e. buildings),

regular keywords and bounding boxes. For SSE, the im-

port highly depends on the file, especially on its number

of keywords (including bounding boxes). The more key-

words a file contains the more times our protocol has

to run the obfuscation process.

Size #Chunks #Keywords #Bounding
Boxes

2 MB 97 4 968 97
5 MB 390 15 125 390
7 MB 426 21 138 426

15 MB 751 44 676 751
37 MB 2 324 112 748 2 324
66 MB 4 741 198 128 4 741
94 MB 6 807 283 528 6 807

Table 6 Varying files for our tests

On the server side, the SSE import does not require

much effort. The server receives encrypted chunks and

SSE index entries. Handling the imported file is not dif-

ferent to the non-SSE operation because chunks are also

stored individually and then processed by the regular

index procedure. Using SSE, this indexing is limited to

meta information and the chunk identifier because the

server cannot read the encrypted content. The only ad-

ditional step in our SSE system is storing the received

SSE index entries in Elasticsearch. This has a slight

impact on performance.

Figure 6 shows the test results. The chart shows that

the import time increases in relation to the file size for

both SSE and non-SSE. This was to be expected. The

larger a file is the longer it takes to process it. Using

the non-SSE import, the time increases only a little

over growing sizes. The performance is very good even

for larger files, because the client transmits the file to a

server running on the same machine. To import a 2 MB

file, only 0.08 seconds are required. 94 MB are imported

within 0.58 seconds. Our import in SSE on the other

hand requires more runtime. For the smallest file, the

operation takes 18 times longer (1.51 seconds) and for

the largest file 33 times (19.53 seconds). On average,

the SSE import takes 22 times longer than importing

files in the non-SSE system.

7.1.2 Search

More important than the import time is the search

time. A file is usually imported once but searched many

times. Testing the search performance is also complex

because this procedure highly depends on the kind of

queries, as well as how many chunks and keywords are

stored on the server. We perform these tests by prepar-

ing two stores and then measure the search time for

different queries. While one store implements SSE, the

other performs the searches without it. Both stores are

strictly separated but include the same files (in case of

SSE they are encrypted). Each store has a total size of

321 MB and includes 15 536 chunks.

For each chunk we store one document in Elastic-

search containing the regular meta information. The

non-SSE store does not require any other information

because the chunk documents include all indexed key-

words.

The SSE store maintains keywords and bounding

box-related documents separately as part of the SSE

index. In addition to that, we generate an xtag for every

keyword/document association unless it belongs to a

bounding box. As a consequence, the number of xtags

and keyword documents are equal. Overall, the store

maintains 1 452 908 documents (see Table 7).

Meta Information Count
Documents (Chunk) 15 536
Documents (BB) 15 536
Documents (Keyword) 710 918
Documents (Xtag) 710 918
Documents (Total) 1 452 908

Table 7 Meta information of the SSE store

Our first test covers single keyword searches. Seven

files have been introduced in the beginning of this sec-

tion (see Table 6), all with different amounts of key-

words to index. We add some user-specific tags to each

of them and run a test for each file respectively. For this

test, we measure the total search time, starting when

the command is executed on the client side until the en-

tire search outcome has been rendered to the client (in-

cluding the decryption in case of SSE). Figure 7 shows

the results.

The runtime increases with growing search results

for both operations. Merging and transmitting the re-

sult to the client takes longer the bigger the result is.

Again, the SSE search requires more time. If the search

result is of size 5 MB, the total time is 0.14 and 0.79 sec-

onds for our non-SSE and SSE operation respectively.

On average, the SSE search takes nine times longer than

searching in a non-SSE store. The difference is therefore

not as high as in our import operation.

The runtime of bounding box queries is very sim-

ilar to the single keyword search. Instead of perform-

ing a PRF, the client uses OPE to transform the coor-

dinates of the bounding box. This generation is more

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 19

Fig. 6 Import on the client side: SSE vs. non-SSE. Client and Server are running on the same machine.

Fig. 7 Single keyword search: SSE vs. non-SSE. Client and Server are running on the same machine.

Fig. 8 Boolean expression search: SSE vs. non-SSE. Client and Server are running on the same machine.

20 Benedikt Hiemenz, Michel Krämer

time-consuming than running a PRF but since we can

only search for one bounding box at a time, the client

only performs four OPE transformations—one for each

coordinate. The search time increases negligibly. The

server is able to compare several OPE ciphertexts as

fast as plaintext ones. The final decryption is equal to

our regular single keyword search and thus equally fast.

As last step, we measure the runtime of a search

with boolean expressions. For this test, we use the same

store on the server side as before but create a more

complex query. The client’s tasks are as follows: with

regards to SSE, the query is compiled according to our

protocol by marking the first keyword as the least fre-

quent one and replacing all remaining keywords with

their corresponding xtraps. The server performs a search

on the marked keyword and finally returns all encrypted

chunks whose generated xtags are either all known to

the database (AND expression) or not known at all

(NOT expression). Using a non-SSE search on the other

hand, the client sends the query and the server se-

lects the respective chunks and replies with the merged

geospatial file in plaintext. Our query consists of 5 log-

ical operands: one is negated (NOT) and the others are

joined using AND. The returned geospatial file includes

97 chunks. Every keyword within the query is associ-

ated with a different amount of chunks, which is shown

in Table 8. For this test, we run the search four times

using the queries presented in Table 9.

Keyword # Chunks
alpha 10 044
beta 3 237
gamma 913
delta 487
epsilon 390

Table 8 Keywords and their chunks

Our queries differ as each one starts with another

keyword. This keyword is always selected as least fre-

quent one and therefore is queried as part of a single

search. To execute our first query, the server runs a

search on alpha resulting in 10 044 chunk identifiers. Af-

ter the client has decrypted them, the server generates

the xtags of all those identifiers in combination with

the remaining query and finally checks if the xtags are

known to the database or not. Our second query results

in 3 237 identifiers to generate xtags from. The other

queries are created analogically. The keyword epsilon

is never selected as it belongs to a NOT expression. By

swapping the first keyword, our xtag generation starts

with a different amount of identifiers each time. The fi-

nal search result however is the same for all four queries.

Query with Boolean Expression
1 AND(alpha beta gamma NOT(epsilon) delta)
2 AND(beta alpha gamma NOT(epsilon) delta)
3 AND(gamma beta alpha NOT(epsilon) delta)
4 AND(delta beta gamma NOT(epsilon) alpha)

Table 9 Queries with boolean expressions

We evaluate how this impacts the total search time.

Figure 8 shows the results.

The chart shows that the search time highly depends

on the keyword which is selected as least frequent. If

10 044 identifiers must be checked for their correspond-

ing xtags, the search requires 5.70 seconds. It decreases

with the amount of identifiers which are returned as

part of the single search result. The best performance

is achieved if the first keyword is linked to as few chunk

identifiers as possible (0.47 seconds). By selecting the

keyword wisely, we can save 92% of the runtime. In

comparison to that, the non-SSE search does not de-

pend on the query’s order. The runtime is always the

same (0.04 seconds). Nevertheless, the SSE search still

requires more runtime than its counterpart.

Not all aspects have been included in these tests.

Our SSE search protocol requires one more communi-

cation round since the client has to decrypt the chunk

identifiers. We do not measure latency in our tests, be-

cause we run all of them on the same machine. This

section shows that operations on encrypted data re-

quire more runtime in comparison to plaintext data,

although we have implemented the basic protocol with

BXT which should achieve the fastest results of all

our encryption protocols. However, the runtimes are

promising to achieve an acceptable performance for real-

world applications.

7.2 Cloud

We tested the performance of searching in encrypted

data in the cloud. For this experiment we set up 7 ho-

mogeneous virtual machines with the following specifi-

cations:

– CPU: 8 cores

– Memory: 8 GB

– OS: Linux, Ubuntu 16.04 LTS 64-bit

Figure 9 depicts our setup. We installed Elastic-

search on three virtual machines and configured it to

use sharding. We also installed MongoDB on three other

virtual machines and configured it for replication. We

used the last virtual machine for GeoRocket.

The cloud we used to host the virtual machines is

based on OpenStack and has the following specifica-

tions:

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 21

MongoDB
Primary

MongoDB
Secondary

Elasticsearch
Master

MongoDB
Secondary

GeoRocket
Elasticsearch

Slave

Elasticsearch
Slave

Fig. 9 Cloud setup for our test

– Controller nodes: 3

– Compute nodes: 13

– Storage nodes: 6

– Total numbers:

– CPU: 448 cores

– Memory: 4 TiB

– Storage: 250 TiB

All nodes were connected via 2 × 10 Gbit/s Ether-

net. The client and the virtual machines in the cloud

were communicating over 100 Mbit/s Ethernet. The

client’s system specifications were the same as in our

previous tests.

We did not test the performance of the import pro-

cess because the relevant parts of it run on the client

side. Therefore, the results from Section 7.1 apply here

too. We also did not test boolean expressions in the

cloud. This test was performed to show the importance

of the least frequent keyword and did not depend on the

server. We therefore executed the tests regarding single

keyword searches only. The test results are presented in

Figure 10.

The runtime increased in comparison to the tests we

had executed on a machine running client and server

simultaneously (see Figure 7). Because the GeoRocket

Server and the CLI are deployed on different machines,

the data transmission between them takes longer. This

affects both our SSE and non-SSE operation. If the

search result is 94 MB large, the total time is 10.42 sec-

onds for our non-SSE operation in comparison to 1.87 sec-

onds we achieved on a single machine. This is as ex-

pected considering a maximum connection rate of 100

Mbit/s (94 MB ÷ max. 100 Mbit/s = at least 7.5s).

The total time for SSE is 0.47 seconds if the search

result is 2 MB large and 12.49 seconds for 94 MB. Com-

paring the non-SSE and SSE operation in the cloud,

the search times are much closer now. Although the

SSE operation also depends on the connection rate, its

search time did not increase as much as the time of its

non-SSE counterpart. This is mainly due to the fact

that Elasticsearch provides several optimizations when

it is deployed in a distributed manner allowing for an

increased performance. The index is divided and dis-

tributed across multiple nodes and queries can be par-

allelized.

Our SSE operations benefit more from these opti-

mizations than the non-SSE ones, because our SSE sys-

tem interacts more often with Elasticsearch. The SSE

index is entirely maintained by Elasticsearch, search-

ing in encrypted data therefore highly depends on the

search engine. The non-SSE operations do not require

as many Elasticsearch requests.

All in all, the transmission time must be added, but

the search operation itself is faster in the cloud, which

becomes particularly evident in our SSE system.

8 Conclusions

In this paper, we designed, implemented, and evalu-

ated an SSE system for geospatial file storage. We fo-

cussed on an approach to encrypt an inverted index

and to protected it against an honest-but-curious server

while maintaining the possibility to query the index by

a client. Our file storage is dynamic as we allow users to

add more documents after the index has been initial-

ized. We introduced multiple protocols that are suit-

able for the index part. They differ in their respective

security level or rather in the amount of their leakage.

Our research shows that the amount of leakage highly

depends on the performance we want to achieve. The

features of the protocols differ too. Our single keyword

search supports bounding box-related queries. In addi-

tion, it allows for deletion of documents. However, BXT

and OXT limit this feature because documents can be

deleted but xtags remain on the server.

We described two protocols to perform a single key-

word search. One achieves a very good performance be-

cause the server only needs one hit to get all documents.

The performance of our extended protocol relies on a

counter that is, in the worst case, equal to the amount

of stored documents. Cash et al. published two proto-

cols extending the single keyword search by two logical

operators (AND and NOT). They differ in their leakage

level and speed respectively. We discussed the leakage’s

impact and which protocol is acceptable in different sce-

narios. We implemented the basic protocol with BXT

as an extension to GeoRocket.

To ensure confidentiality, the actual geospatial files,

or rather the chunks extracted from them, are encrypted

symmetrically using AES. The leakage is small because

an honest-but-curious server can only learn the chunk

size and how many chunks have been extracted from the

imported file. We evaluated our entire SSE system and

compared it to the regular import and search process

(on plaintext data). Both operations take much longer

22 Benedikt Hiemenz, Michel Krämer

Fig. 10 Single keyword search: SSE vs. non-SSE. The server is deployed in the cloud.

in SSE. We also performed our evaluation in a cloud.

The search time decreases for SSE in such an envi-

ronment (without regard to the transmission time) be-

cause the operations benefit from the distributed Elas-

ticsearch index.

In summary, SSE fits well in geospatial file storage.

We enable users to send their sensitive data to the cloud

without having to worry that the content’s confidential-

ity is harmed. SSE supports a keyword-oriented search

in encrypted data while hiding the queried keywords.

With our approach users can handle their confidential

data in GeoRocket, but our SSE system can also be

integrated into other geospatial storage solutions.

Although GeoRocket targets geospatial data stor-

age, it can actually handle arbitrary structured files.

This enables further applications as our keyword-based

search does not depend on geospatial features. Our ap-

proach can therefore be applied to other areas dealing

with keyword-based searches in encrypted data in gen-

eral.

Of course, security can never be fully ensured. We

discussed several leakages in the course of this paper

which allow an honest-but-curious server to learn some

information about queries or the stored files. Besides

that, security is not a state but a process requiring

both users and developers to stay informed about new

threats and handle their data in a responsible way with

regards to its importance and the required confiden-

tiality. However, our SSE system shows that users do

not need to avoid the cloud but can benefit from its

advantages and protect their data at the same time.

8.1 Future Work

In this last section, we introduce some work that can

be done to continue our research. Although SSE has

made a huge progress in the last decade, some issues are

still open. Boolean expressions need further improve-

ments like the support for nested expressions. This is

not exclusively a security-related issue because the eas-

iest way to handle nested expressions is by fragmenting

them. The transformation of boolean expressions while

preserving their truth table is useful in many areas. In

addition, a strategy to find the least frequent keyword

within a query is important because the performance

depends on it. An generic strategy regarding our re-

quirements remains as future work.

Regarding OXT and BXT, future work is needed

to improve the deletion of xtags. During a delete op-

eration, neither client nor server are able to identify

all xtags for a certain document. Over time this causes

growing storage.

Our protocols assume an honest-but-curious server,

that answers all requests strictly to the protocol. The

client is not able to verify the correctness of the server’s

responses—e.g. if all returned encrypted identifiers re-

ally belong to the client’s request. Future work should

address the threat of a malicious server and how clients

could be protected from malicious responses.

More search features should also be supported in

addition to our range queries. Examples for other fea-

tures are wildcard and substring searches. Some papers

already describe the theoretical part of these features

in an SSE environment [6], but more work with a fo-

cus on real-world applications is necessary in this field.

SSE should support functionalities similar to the ones

in plaintext search engines.

Dynamic Searchable Symmetric Encryption for Storing Geospatial Data in the Cloud 23

We do not support multi-party settings so far. Our

protocol involves a single data owner who has exclu-

sive read and write access to the encrypted data. Multi

reader or writer settings are useful in company projects

in which members share geospatial data in a group.

These settings should be addressed in future work.

Acknowledgements We would like to thank Ralf Gutbell
for his thorough review and the valuable input.

References

1. Cash D, Jarecki S, Jutla C, Krawczyk H, Roşu

MC, Steiner M (2013) Highly-Scalable Searchable

Symmetric Encryption with Support for Boolean

Queries, Springer, Berlin, Heidelberg, pp 353–373.

DOI 10.1007/978-3-642-40041-4 20

2. Cash D, Jaeger J, Jarecki S, Jutla CS, Krawczyk

H, Roşu MC, Steiner M (2014) Dynamic search-

able encryption in very-large databases: Data struc-

tures and implementation. In: 21st Annual Net-

work and Distributed System Security Symposium,

NDSS 2014, San Diego, California, USA, February

23-26, 2014

3. CryptDB (2015) http://css.csail.mit.edu/

cryptdb/, [Online; accessed 30-Jan-2017]

4. Elasticsearch (2017) https://www.elastic.co/

products/elasticsearch, [Online; accessed 23-

Jan-2017]

5. European Union (2016) Regulation (EU) 2016/679

of the European Parliament and of the Council of

27 April 2016 on the protection of natural persons

with regard to the processing of personal data and

on the free movement of such data, and repealing

Directive 95/46/EC (General Data Protection Reg-

ulation) - OJ L 119 (EN), p 8. Article 45

6. Faber S, Jarecki S, Krawczyk H, Nguyen Q,

Rosu M, Steiner M (2015) Rich Queries on En-

crypted Data: Beyond Exact Matches, Springer In-

ternational Publishing, pp 123–145. DOI 10.1007/

978-3-319-24177-7 7

7. Gentry C (2009) A fully homomorphic encryption

scheme. PhD thesis, Stanford University

8. GeoRocket Website (2017) http://georocket.io,

[Online; accessed 10-Jan-2017]

9. Goldreich O (1987) Towards a theory of software

protection and simulation by oblivious RAMs. In:

Proceedings of the 19th ACM Symposium on The-

ory of Computing, ACM, New York, NY, USA,

STOC ’87, pp 182–194, DOI 10.1145/28395.28416

10. Hahn F, Kerschbaum F (2014) Searchable encryp-

tion with secure and efficient updates. In: Pro-

ceedings of the 21st ACM SIGSAC Conference on

Computer and Communications Security, ACM,

New York, NY, USA, CCS ’14, pp 310–320, DOI

10.1145/2660267.2660297

11. Kamara S, Papamanthou C (2013) Parallel and Dy-

namic Searchable Symmetric Encryption, Springer,

Berlin, Heidelberg, pp 258–274. DOI 10.1007/

978-3-642-39884-1 22

12. Kamara S, Papamanthou C, Roeder T (2012) Dy-

namic searchable symmetric encryption. In: Pro-

ceedings of the 2012 ACM Conference on Com-

puter and Communications Security, ACM, New

York, NY, USA, CCS ’12, pp 965–976, DOI 10.

1145/2382196.2382298

13. Leach P, Mealling M, Salz R (2005) RFC 4122:

A Universally Unique IDentifier (UUID) URN

Namespace

14. Ostrovsky R (1992) Software protection and sim-

ulation on oblivious RAMs. PhD thesis, Mas-

sachusetts Institute of Technology (MIT)

15. Rotterdam Open Data Store - Rotterdam 3D

(2014) http://rotterdamopendata.nl/dataset/

rotterdam-3d-bestanden, [Online; accessed 10-

Jan-2017]

16. Song DX, Wagner D, Perrig A (2000) Practical

techniques for searches on encrypted data. In: Pro-

ceedings of the 2000 IEEE Symposium on Security

and Privacy, IEEE Computer Society, Washington,

DC, USA, SP ’00, pp 44–55

17. Stefanov E, Papamanthou C, Shi E (2014) Practi-

cal dynamic searchable encryption with small leak-

age. In: Network and Distributed System Security

(NDSS) Symposium, vol 71, pp 72–75

18. Yao AC (1982) Protocols for secure computations.

In: Proceedings of the 23rd Annual Symposium on

Foundations of Computer Science, IEEE Computer

Society, Washington, DC, USA, SFCS ’82, pp 160–

164, DOI 10.1109/SFCS.1982.88

19. Yavuz AA, Guajardo J (2015) Dynamic Search-

able Symmetric Encryption with Minimal Leak-

age and Efficient Updates on Commodity Hard-

ware, Springer International Publishing, pp 241–

259. DOI 10.1007/978-3-319-31301-6 15

http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
http://georocket.io
http://rotterdamopendata.nl/dataset/rotterdam-3d-bestanden
http://rotterdamopendata.nl/dataset/rotterdam-3d-bestanden

	Introduction
	Related Work
	GeoRocket
	Searchable Symmetric Encryption
	Index Security
	Implementation
	Evaluation
	Conclusions

