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Michel Krämera,∗, Sven Freseb, Arjan Kuijperc

aFraunhofer Institute for Computer Graphics Research IGD, 64283 Darmstadt, Germany
bwetransform GmbH, 64283 Darmstadt, Germany

cTechnische Universität Darmstadt, 64283 Darmstadt, Germany

Abstract

Smart Cities make use of ICT technology to address the challenges of modern

urban management. The cloud provides an efficient and cost-effective platform

on which they can manage, store and process data, as well as build applica-

tions performing complex computations and analyses. The quickly changing

requirements in a Smart City require flexible software architectures that let

these applications scale in a distributed environment such as the cloud. Smart

Cities have to deal with huge amounts of data including sensitive information

about infrastructure and citizens. In order to leverage the benefits of the cloud,

in particular in terms of scalability and cost-effectiveness, this data should be

stored in a public cloud. However, in such an environment, sensitive data needs

to be encrypted to prevent unauthorized access.

In this paper, we present a software architecture design that can be used as a

template for the implementation of Smart City applications. The design is based

on the microservice architectural style, which provides properties that help make

Smart City applications scalable and flexible. In addition, we present a hybrid

approach to securing sensitive data in the cloud. Our architecture design com-

bines a public cloud with a trusted private environment. To store data in a

cost-effective manner in the public cloud, we encrypt metadata items with CP-

ABE (Ciphertext-Policy Attribute-Based Encryption) and actual Smart City
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data with symmetric encryption. This approach allows data to be shared across

multiple administrations and makes efficient use of cloud resources.

We show the applicability of our design by implementing a web-based ap-

plication for urban risk management. We evaluate our architecture based on

qualitative criteria, benchmark the performance of our security approach, and

discuss it regarding honest-but-curious cloud providers as well as attackers try-

ing to access user data through eavesdropping. Our findings indicate that the

microservice architectural style fits the requirements of scalable Smart City

applications while the proposed security approach helps prevent unauthorized

access.

Keywords: Cloud Computing, Software Architecture, Urban Management,

Security, Geospatial Information Systems

1. Introduction

Intelligent and effective urban planning is becoming increasingly important.

According to a United Nations study on World Urbanization in 2014, more than

50% of the world’s population has been living in cities [1]. This number will

keep increasing. The United Nations estimate that by 2050 about 66% of the5

world’s population will be urban. Managing large modern cities is already a

complex task today but will be even more so in the future.

For this reason, many city administrations have introduced methods and

technologies helping them analyze and understand the complex socio-economic

interactions in their city and derive plans that facilitate sustainable urban devel-10

opment. Information and communication technology (ICT) is becoming increas-

ingly important for these cities as it allows them to analyze large cross-thematic

data (Big Data) and to derive knowledge that can be used in the urban develop-

ment process [2]. The technologies are supported by specialized user interfaces

that are easy to understand for domain experts such as urban planners, archi-15

tects and other stakeholders [3, 4].
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A city that makes use of ICT to improve urban development processes is

often referred to as a Smart City [5]. In other words, Smart Cities make use of

intelligent technology to do smart things (or to derive knowledge helping them

to do smart things). To achieve their goal of a sustainable and livable urban20

environment, they perform analyses on large amounts of data. For example,

continuously monitoring traffic density, air quality, and weather helps them

produce plans to counteract negative implications of recurring traffic jams and

their impact on the environment [6]. Laser Mobile Mapping Systems (LMMS)

[7] can be used to collect large 3D point clouds in an urban environment, which25

can be analyzed to monitor tree growth and to foresee pruning works or to

plan measures for environmental protection [8]. The data volume necessary for

these analyses often exceeds the capabilities of the hardware available to city

administrations. At the same time, data and analysis results typically need

to be shared among various parties (e.g. departments in a municipality) [9].30

For these reasons, Smart Cities make use of cloud technology as it fits most

of their requirements with respect to scalability, availability and resilience (see

Section 2.1).

Modern approaches to software architecture design such as the microservice

architectural style [10] allow for the creation of flexible and scalable software35

solutions running in the cloud. Microservices are small distributed programs,

each of them serving one specific purpose. At the same time, they are highly

scalable and resilient. They can be used flexibly to build customized user in-

terfaces for different domain groups (e.g. urban planners, decision makers, or

citizens). Their scalability and resiliency go in line with the requirements put40

on constantly growing cities that must be able to quickly adapt to changes (as

depicted in Section 2.1.4). In previous work, we were able to show that mi-

croservices can be used to process large amounts of geospatial data in the cloud

for various purposes including land monitoring and urban planning [11].

A service-oriented architecture based on microservices therefore fits well in45

the Smart City domain. However, the data these services have to store and

process is often sensitive and requires protection against unauthorized access.
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This includes, for example, personal data (names, addresses, birth dates, and

the like) as well as information about properties, infrastructure, and criminal

offenses. In particular, combining the large amounts of data available in a Smart50

City network can give deep insight into the personal lives of citizens and can

reveal other highly sensitive information. The use case depicted in Section 5.1

deals with estimating the risk of terrorist attacks and calculating consequences

and possible counter-measures. In the wrong hands, this information can be

dangerous. The services dealing with this data therefore need special protection.55

In this paper, we present concepts for building secure applications in Smart

City clouds using microservices. We describe an approach based on a hybrid

cloud architecture where data is stored in a public cloud, but sensitive pro-

cessing is performed by microservices deployed to a trusted environment. We

encrypt data before it is transferred between microservices and when it is stored60

in the cloud. The purpose of using public storage over private storage is to have

a cost-effective and highly scalable storage solution that supports data shar-

ing between different applications. The encryption scheme we propose utilizes

Attribute-Based Encryption (ABE) to support data sharing between users and

applications. We use ABE to encrypt small metadata items that are directly65

accessible. Besides other information, these metadata items contain a symmet-

ric key that is used to encrypt the actual Smart City data. This larger data can

be kept in an inexpensive cloud service such as an object store.

In order to demonstrate the benefits of our approach, we apply it to a use case

from the urban planning domain. In Section 5.1, we describe an application that70

can be used to calculate the risk of terrorist attacks and possible damage. Such

an application and, in particular, the data it deals with need special protection

against unauthorized access. We show that our approach is implementable and

can be applied to such a use case.

1.1. Contribution75

Although microservices have many benefits regarding flexibility and scala-

bility, they can also lead to increased effort in designing, implementing, and
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maintaining a software application, in particular if it needs to be secure as in

our case. Since each microservice is a separate program, depending on how the

services are deployed and with what kind of data they have to deal with, each of80

them has to be made secure independently. This is particularly true for Smart

City applications dealing with large and sensitive data. In order to prevent

unauthorized access to this data, distributed services have to communicate over

secure channels and the data should always be encrypted before it is stored.

However, it should still be possible to process it in a distributed way to exploit85

the possibilities of a Smart City cloud. The processing should be scalable, so

that large amounts of data can be managed. To the best of our knowledge,

there is no work yet describing concepts how to implement secure microservice

applications for Smart Cities in the cloud. Our paper tries to fill this gap.

The main scientific contribution of our work is as follows: In order to reduce90

the required implementation effort, we present a generic architecture design

based on the microservice architectural style that can be used as a template

for secure cloud-based Smart City applications. Our design employs a hybrid

model consisting of a public and a private cloud environment. Sensitive data is

stored and processed in the trusted private environment, whereas the rest of the95

application can run in the public cloud. We show that our architecture design

is implementable and can be applied to a practical use case.

The second contribution of our work is related to secure data storage. In

our architecture design, data is encrypted by combining ABE (Attribute-Based

Encryption) with symmetric encryption (e.g. AES). We only encrypt small100

metadata items with ABE, while the actual Smart City data is encrypted sym-

metrically. We split the metadata from the actual dataset in order to be able

to keep them at different locations. This enables us to use cloud services such

as object storage to store very large Smart City data while keeping the smaller

metadata items at a location that is more directly accessible (e.g. a database or105

a fast cloud resource such as an SSD block device or a shared file system). As

a result, we are able to utilize cloud resources in a reasonable and cost-effective

way to manage large datasets and to share them among different parties.

5



Our application design covers user authentication and authorization, but also

secure data storage, transfer between the public and private cloud components,110

as well as secure processing. The scheduling and management of data processing

tasks are not part of this paper. We discuss our design regarding honest-but-

curious cloud providers as well as attackers trying to access user data through

eavesdropping (see Section 5.4). An evaluation regarding more advanced attacks

such as Cross-Site Scripting and Distributed Denial-of-Service attacks is beyond115

the scope of this article.

Note that the main focus of this paper is on software applications for clouds

that provide a dynamic environment of virtual machines running on commodity

hardware. This applies to public clouds offered by commercial vendors such as

Amazon Web Services (AWS), Microsoft Azure or the Google Cloud Platform,120

but also to private clouds operated by Smart Cities themselves. Other infras-

tructures such as Smart Grids, Internet of Things (IoT), or fog computing are

beyond the scope of this work.

1.2. Outline

The remainder of this paper is structured as follows. First, we motivate125

secure Smart City applications in the cloud by explaining the concepts of Smart

Cities and their requirements towards effective use of the cloud, as well as de-

scribing why Smart City data needs to be stored securely and what issues this

raises in a cloud environment (Section 2).

After this, we present related work on software architectures in the cloud,130

Smart City clouds and security-related topics. We also compare related ap-

proaches to our work (Section 3).

In the paper’s main part, we describe our software architecture design and

give a detailed description of our components (i.e. the microservices) and the

data processing workflow. We also explain our approach to securing sensitive135

data in the cloud and present details on how users can access the encrypted

data (Section 4).
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Subsequently, we show the applicability of our design by implementing a

web application dealing with risk assessment in urban areas. We also perform

a qualitative evaluation of our architecture design and present the results of a140

benchmark of our security method. Finally, we discuss how our approach can

help prevent attackers from accessing sensitive data (Section 5).

The paper concludes with a summary of advantages and disadvantages of

our approach (Section 6) and an outlook on future work (Section 7).

2. Requirements and motivation145

In this Section, we first show how cloud computing can benefit Smart City

administrations (Section 2.1) and then explain the insecurities of public clouds

and why we propose a hybrid approach (Section 2.2).

2.1. Smart City clouds

As described above, Smart Cities make use of cloud technology to analyze150

and share large amounts of Smart City data. When building distributed ap-

plications, Smart Cities have requirements related to scalability, resilience and

self-management that can be covered by the cloud. According to the US Na-

tional Institute for Standards and Technology (NIST), a cloud can be described

by the following characteristics: on-demand self service, broad network access,155

resource pooling, rapid elasticity, measured service [12]. In the following, we

describe how these characteristics support the goals of Smart Cities and how

the cloud matches their requirements. Note that we use these characteristics

later in Section 5.2 to qualitatively evaluate our architecture design.

2.1.1. On-demand self service160

The cloud allows consumers (i.e. users of the cloud) to acquire computing

resources unilaterally without requiring human interaction on the side of the

cloud provider. In the context of Smart Cities, the municipality needs to have

full control over the resources offered by the cloud. They need to assign resources

to certain tasks and revoke them later if they are not needed anymore. Since165
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modern cities are highly dynamic and unpredictable events can happen at any

time, the municipality needs to be able to assign the resources on their own

without the help of the cloud provider. The overhead caused by communicating

with a third party slows down processes, whereas high automation as it is offered

by the cloud provides the required flexibility.170

Interestingly, we can find a similar goal in the concept of Smart Cities. One

of the aims is to create independent districts that manage themselves without

requiring the municipality to take action. A Smart City looks for sustainable

solutions with respect to urban planning in order to achieve long-term indepen-

dence. The notion of self-managing districts matches the requirement to uni-175

laterally and independently acquire resources without interaction on the side of

the cloud provider.

2.1.2. Broad network access

The cloud allows a number of clients and devices (e.g. mobile phones, tablets

or desktop PCs) to access its resources through unified interfaces. For a Smart180

City this aspect is important since the infrastructure in a large municipality

is typically quite heterogeneous and consists of many different devices. Urban

planners and architects use workstations to plan developments in the city but

they also need tablets to evaluate and visualize their plans while they are in

the field. This means they also need access to data stored in the cloud from185

virtually everywhere in the city.

Smart Cities often deploy high-performance fiber networks to facilitate broad

network access. A recent example from the city of Bristol in the UK shows

how various Smart City applications can be implemented using a city-wide net-

work [13]. Bristol uses this network on the one hand to collect data from devices190

and sensors distributed all over the city and in the future also from autonomous

cars. In addition, they offer high-speed Internet access to local companies and

deploy WiFi-enabled lamp posts for their citizens.
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2.1.3. Resource pooling

A cloud is typically accessed by a number of users at the same time. The195

cloud resources are dynamically assigned and reassigned depending on the de-

mand from the individual end-user (e.g. an urban planner using a tablet to

visualize smart data). The end-users typically do not know how many resources

are currently in use or where they are located.

In the context of Smart Cities, this property can be utilized for distributed200

storage and processing of data. End-users in the municipality can store data in

the cloud and gain access to it from anywhere in the city without ever knowing

where the data is physically stored. They can also pass on information to

colleagues, decision makers or other stakeholders such as companies or citizens

through one channel or medium (i.e. the cloud) that appears to be centralized205

but is in fact highly distributed.

2.1.4. Rapid elasticity

The cloud is often referred to as being able to offer virtually unlimited re-

sources. New resources can be acquired and released on demand in a short

amount of time. This feature allows Smart Cities to react on unpredictable210

events very quickly. For example, in the use case presented in Section 5.1, we

describe that the municipality must be able to react on terrorist threats and to

quickly calculate consequences and possible counter-measures such as improving

building structures or putting up barriers. In this case, it is of major impor-

tance that the cloud is reliable and offers any resources required to perform the215

necessary tasks.

The concept of rapid elasticity can also be applied to the Smart City itself.

Due to the high speed in which cities are growing nowadays, a Smart City must

be designed to be scalable and resilient (i.e. elastic) so it is able to handle future

developments and to keep pace with urban growth.220

9



2.1.5. Measured service

In a cloud environment, the use of resources is optimized based on results

from comprehensive monitoring. At the same time, monitoring allows cloud

providers to create reports that show the amount of resources used by a client

in a specific billing period. The reports are often generated in real-time to offer225

transparency for both the client and the cloud provider.

Municipalities appreciate the fact that a cloud scales on demand. This means

that resources can be acquired when necessary, but unneeded resources can also

be released to effectively save money. Typically, this is what differentiates a

cloud from on-site IT infrastructure which has to be prepared for every case230

and cannot be scaled down to save resources.

Just like a cloud provider, a municipality needs to monitor developments

in the city to optimize urban plans. A Smart City often also provides trans-

parency for their citizens as they make the plans publicly available and offer the

possibility to engage in decisions.235

2.1.6. Service models

In addition to the characteristics described above, a cloud typically offers

three service models: Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS). A Smart City offers services in all three

models. They make use of external cloud providers but they also deploy their240

own fiber networks and smart grids to provide a fast and reliable infrastruc-

ture (IaaS). Based on this, they offer services and application programming

interfaces (APIs) to interested parties such as companies or even freelance pro-

grammers who build small applications that they distribute over the city’s app

store (PaaS). At the same time, the municipalities share collected information245

with the public as so-called Open Data. Finally, Smart Cities offer services to

citizens and other stakeholders such as apps for mobile devices or web portals

for public participation (SaaS).
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2.2. Public cloud insecurities

Storing the data in a public cloud might be a reasonable choice due to its250

cost-effectiveness and scalability. However, the security of public cloud storage

cannot always be trusted which becomes obvious when taking a closer look at

objectives and risks of cloud providers. As outlined by Nanavati et al., cloud

providers often use proprietary infrastructure to keep competitive advantages,

and in order not to damage their reputation, it is further very unlikely that255

cloud providers report all bugs and security-related incidents to the public [14].

Another reason to be careful when working with cloud providers is that there

can always be weaknesses with the cloud provider’s interface as outlined by

Somorovsky et al. [15]. Furthermore, we consider providers of public clouds

as honest-but-curious, which means they store and process the data without260

tampering but might try to learn the plaintext of the data.

For these reasons, careful evaluation is necessary when using resources by

cloud providers in any kind of application that processes sensitive data. As

a consequence, in the remainder of this paper, we differentiate between two

environments:265

Untrusted A public cloud that is not directly under the control of the user (in

our case the Smart City administration) is considered untrusted.

Trusted A private cloud that is maintained by the user is considered a trusted

environment.

To use cost-effective and scalable public cloud storage while not relying on270

the security of the cloud provider’s interfaces, as well as to protect the data

from being accessed by the cloud provider itself, we propose a hybrid approach

consisting of a trusted and an untrusted environment (see Section 4). We en-

crypt sensitive data before uploading it to the public cloud (see Section 4.1).

Data processing that needs the unencrypted plaintext data is performed in the275

trusted private cloud.
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3. Related work

While the microservice architectural style has already been recognized in

the industry as the new state-of-the-art approach to build modern cloud-based

applications, the topic is still rather unexplored in science. There are a couple280

of papers, however, dealing with the experiences from applying the microservice

approach to real world problems. For example, Vianden et al. present a ref-

erence architecture for Enterprise Measurement Infrastructures (EMIs) as well

as two case studies in which they apply this architecture to an EMI monitor-

ing software development and another one collecting risk metrics in IT projects285

[16]. They argue that classic SOA architectures suffer from centralized integra-

tion problems such as the need for a common data schema and related mapping

problems. To avoid these problems they divide their EMI into dedicated mi-

croservices for measurement, calculation and visualization. Their results look

promising and they suggest further long-term field studies.290

Villamizar et al. report on a case study they conducted to compare a

monolithic architecture to one based on microservices and another one running

serverless on AWS Lambda [17]. They implemented an example application us-

ing these three different architectures and compared performance and response

times, but particularly focused on the costs. They conclude that microservices295

can help reduce infrastructure costs tremendously but the increased effort of

implementing and maintaining an application based on this architectural style

have to be considered carefully.

In previous work, we used the microservice architectural style to implement

a system for the processing of large geospatial data in the cloud [11]. We were300

able to show that microservices can be used to create a scalable, modular, and

maintainable system. In particular, we could demonstrate that the microservice

approach allows independent and distributed teams to collaborate and build a

joint software.

A couple of works focus on Smart Cities and how they can leverage the305

cloud. For example, Krylovskiy et al. use the microservice architectural style to
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implement a Smart City Internet of Things (IoT) platform [18]. They argue that

the microservice approach helps their interdisciplinary and international team

to work independently but collaborate efficiently. They also conclude that the

growing number of Open Source tools available to build and deploy microservices310

to various cloud providers will provide long-term benefits, in particular because

they allow them to deploy their platform to many cities and different cloud

infrastructures.

Khan et al. present a software architecture for a cloud-based analysis ser-

vice supporting planning and decision making in future Smart Cities [19]. Their315

solution is based on well-known cloud technologies, tools and open standards

making their architecture easy to be integrated into existing Smart City envi-

ronments. According to them, Smart Cities can benefit from “big, and often

real-time cross-thematic, data collection, processing, integration and sharing

through inter-operable services deployed in a cloud environment”. However,320

their architecture does not provide a way to process and store sensitive data in

a secure way.

In a subsequent work, Khan et al. therefore present a framework for secure

and privacy-aware service provisioning in Smart Cities [20]. Compared to our

paper, they specifically focus on the security challenges in Smart Cities, as well325

as the stakeholders and their requirements towards privacy and trustable ser-

vices. They do not discuss secure data storage or the microservice architectural

style.

In the area of secure data storage in the Cloud, Li et al. present an approach

to sharing personal health records [21]. They use Key-Policy Attribute-Based330

Encryption (KP-ABE) to allow patients to setup fine-grained access control to

their health records. They improve existing KP-ABE schemes in order to enable

efficient and on-demand user revocation. They evaluate the security of their

approach and show that their security measures work in an efficient and scalable

way. Li et al. mainly focus on security, but also present a web application to335

manage patient health records. This is in contrast to our work that focuses

more on the software architecture. Li et al. do not discuss microservices. While
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they show that their security measures are efficient and scalable they do not

discuss the scalability or other qualitative criteria of their overall system.

The same applies to the work by Narayan et al. [22]. They also present a340

system to manage electronic health records stored on honest-but-curious cloud

providers in a secure way. Their goal is to maintain data confidentiality and

privacy while still keeping the system scalable and access policies flexible. To

achieve this, they combine broadcast ciphertext-policy attribute-based encryp-

tion (bABE) with symmetric encryption. Files in their system are stored in a345

way that health record’s metadata is encrypted using bABE. Each file’s meta-

data contains a symmetric key. The health records data itself is encrypted with

this symmetric key, enabling eligible users to decrypt the health record’s meta-

data using their bABE private keys. They can then use the decrypted symmetric

key to decrypt the health record’s content using fast symmetric cryptography.350

Compared to our work, Narayan et al. do not discuss software architecture at all

but focus more on Attribute-Based Cryptography. The combination of bABE

with symmetric encryption is similar to our approach, but as we describe in Sec-

tion 4.1.2, we are able to split metadata from larger actual data and therefore

make more efficient use of cloud resources. Narayan et al. also do not include355

a performance benchmark like we do in Section 5.3. Since they do not aim at

Smart City applications, both Li et al. and Narayan et al. focus on challenges

very different to ours. Their approaches include support for multiple authorities

and key revocation mechanisms and therefore use other encryption schemes as

we do.360

Bugiel et al. outline a secure cloud architecture that uses two distinct compo-

nents for different tasks [23]. A trusted cloud performs pre-computations while

an untrusted but more powerful commodity cloud is used to actually perform

user queries. During setup, the trusted cloud encrypts all data and algorithms

that need to be performed using garbled circuits. The encrypted data and algo-365

rithms are pushed to the commodity cloud where the encrypted algorithms are

applied to the encrypted data. When clients query for data, the trusted cloud

retrieves the results from the commodity cloud and verifies them before forward-
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ing them to the clients. They claim that in their approach, the cloud does not

learn anything about the algorithms and the data it processes apart from an370

upper bound of the data size. Through result verification, malicious commodity

cloud providers can further not modify result data without the trusted cloud

detecting it.

Popa et al. [24] aim to enable secure data processing for web applications,

especially for scenarios where the server provider or operator cannot be trusted.375

They use asymmetric client-side data encryption as well as key-chaining for

secure data sharing between users and groups. The framework they implement

provides means to perform computations such as keyword search on encrypted

data without revealing critical information, and it further offers a solution to

prevent system operators from transmitting malicious client-side code by using380

a browser plug-in checking the integrity of transmitted JavaScript code.

Our approach shares the notion of a trusted component as suggested by

Popa et al. [24] and Bugiel et al. [23]. However, since the risk assessment

calculations our web application needs to perform are rather complex, it is in

contrast to their approaches not possible to let an untrusted cloud perform385

them on encrypted data, for instance by using garbled circuits. Our software

architecture is therefore fundamentally different from theirs.

4. Approach

In order to support the implementation of scalable and secure applications,

we propose a concept that is based on a hybrid cloud architecture. The system390

architecture design consists of three major components being a web interface

layer, a private processing cloud as well as public cloud storage as depicted in

Figure 1.

One of the most important parts in our design is the trusted component. It

represents a set of services that run in a trusted environment (i.e. the private395

cloud; see definition in Section 2.2). We describe it in detail in Section 4.2.1.
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Figure 1: The major components of our system design are a web interface, a cloud for pro-

cessing private data and public cloud storage.

The microservices are divided into bounded contexts [25] denoted by dashed

lines in the Figure. The trusted component and the web application represent

two different bounded contexts. In the architecture diagram, we included a third

optional and unnamed bounded context suggesting that there may be further400

system components (or web applications) accessing the trusted component and

the data shared in the public cloud.

In order to process data and perform operations that users request via any

of the web applications, the web interface layer is connected to the private

processing cloud. The private processing cloud consists of all microservices that405

are required to provide the overall functionality of the applications implemented

in the Smart City cloud. In this design, each microservice is implemented to

provide distinct functionality. The overall functionality of Smart City cloud

applications is then achieved through tight communication and orchestration of

the functionalities provided by the individual microservices.410

As a solution to store and share all data that is gathered and processed by

the Smart City cloud, our system architecture utilizes public cloud storage. The

purpose of using public storage over private storage is to have a cost-effective

and highly scalable storage solution that supports data sharing between differ-

ent applications. Since data is stored using external cloud storage providers, it415
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is important to protect the confidentiality of sensitive data. But at the same

time, this data needs to be accessible by all eligible users and shared between ap-

plications. To satisfy both requirements, we utilize a hybrid encryption scheme

provided by services implemented in the private processing cloud in order to

keep data confidential and support access control in a scalable way. In the re-420

mainder of this section, we describe our secure storage model in detail before

outlining how the private processing cloud is orchestrated in order to support

the workflow of different Smart City cloud applications.

4.1. Confidential scalable storage

In order to protect the confidentiality of data stored in the public cloud,425

all sensitive data needs to be encrypted before being uploaded. To be able

to scale these operations and at the same time retain the confidentiality of

the processed data, all encryption and decryption operations are performed

in the private processing cloud. Our encryption scheme uses Attribute-Based

Encryption (ABE) to support data sharing between users and applications.430

We combine ABE with symmetric encryption to make efficient use of cloud

resources.

4.1.1. Attribute-Based Encryption

The main benefit of Attribute-Based Encryption (ABE) is that it allows for

embedding access policies in the encryption process and enforcing them based on435

the private key used during decryption. This way, data can be shared amongst a

group of users. The concept of ABE has first been introduced by Sahai et al. [26]

as a new approach for Identity-Based Encryption [27, 28]. Sahai et al. outline

that identities can be derived from a set of attributes each individual possesses.

They propose a key generation scheme that uses sets of attributes to generate440

distinct private keys representing these attributes. In ABE, all parties holding

a public key can encrypt data while only users with private keys matching a

pre-defined number of attributes can decrypt the ciphertext.
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In order to be able to use ABE in a larger variety of systems that require

more fine-grained access control, Goyal et al. [29] have developed the concept of445

Key-Policy Attribute-Based Encryption (KP-ABE). In KP-ABE each ciphertext

labels attributes that are required to decrypt it. Each private key contains a

monotone access structure over these attributes. A party can decrypt a cipher-

text if the attributes of the ciphertext are included in its private key’s access

structure.450

In addition to KP-ABE, there is Ciphertext-Policy Attribute-Based Encryp-

tion (CP-ABE) which has been introduced by Waters et al. [30]. CP-ABE

follows a different strategy than KP-ABE: instead of storing access policies in

the private keys, it is included in the ciphertext. Accordingly, the private keys

expose access attributes that the owner possesses. While previous work outlined455

notions of ABE conceptually and focuses on security concerns, Bethencourt et

al. [31] were the first to implement a CP-ABE scheme for practical use and per-

form extensive performance evaluation. As their performance evaluation reveals,

CP-ABE can induce quite significant overhead due to its use of pairing-based

cryptography. Its encryption and decryption times increase linearly with the460

amount of attributes contained in the access structure.

4.1.2. Our approach to secure data storage

We utilize CP-ABE rather than KP-ABE since it allows for more flexibility

in data access structures and less overhead when new access attributes are intro-

duced in the overall system. We propose to combine CP-ABE with symmetric465

encryption (see Figure 2). In the first step, sensitive data is encrypted using a

symmetric encryption scheme such as AES. For each sensitive data item there is

a metadata item generated. The metadata item can contain any information on

the sensitive data that should stay confidential such as the author of the data or

the location where it should be stored. Additionally, the metadata item contains470

the symmetric key used to encrypt the data item. The metadata item is then

encrypted using CP-ABE under an access policy defined by the data owner.

With this approach, CP-ABE encryption and decryption only need to be ap-
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Figure 2: The CP-ABE-encrypted metadata item contains the symmetric key and a pointer

to the larger AES-encrypted file body.

plied on the small metadata item while the actual dataset can be encrypted and

decrypted using significantly faster symmetric cryptography.475

Our approach has a major benefit. The metadata item contains a ‘data

location’ attribute pointing to the actual sensitive data. Due to this, we are

able to store metadata item and the larger dataset at separate locations. For

example, the metadata item can be kept in a database or another fast cloud

resource such as a block device or a shared file system, while the actual dataset480

can be stored in an inexpensive cloud service such as an object store. Note

that both locations can be in the public store as all items are encrypted. As a

result, we can make efficient use of cloud resources. We refer to Section 5.3 for

a performance benchmark and a comparison to other work.

4.2. Secure data processing485

As mentioned in Section 4, our storage solution is supported by a private

processing cloud. The benefit from this approach over other approaches such

as encrypted processing [23] is the greater flexibility regarding operations that

can be performed on the data, as well as significantly better performance since

no complex operations need to be performed on encrypted data.490

However, our system design comes with the drawback that processing of sen-

sitive data cannot be performed on public cloud servers. Therefore, in addition

to public cloud storage, a capable private cloud infrastructure needs to be set

up and scaled to the required tasks.
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4.2.1. Trusted Component495

To perform secure data processing and support the encryption operations

required by our storage model, besides other services providing functionality for

the applications implemented in the Smart City cloud, the private processing

cloud contains a set of services that form a trusted component. The trusted

component consists of an authentication microservice, a microservice to handle500

encryption and decryption operations (the crypto service), as well as a private

database connector microservice with a private database (see Figure 3).

The authentication microservice is the first service any user or other mi-

croservice has to interact with when accessing protected data. The authentica-

tion microservice handles authentication and authorization based on accounts505

which are required to view any sensitive data.

Associated with each account is a secret as well as a private key. While the

secret is used for authentication, the private key is generated using CP-ABE

Authentication
service

Crypto
Service

Private
Database
Connector

Trusted component

Web portal

Public Cloud Connector Private cloud

Data
processing

Figure 3: The trusted component consists of three microservices (authentication service,

crypto service and private database connector) and runs in the private cloud (detailed view

of Figure 1 on page 16)
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and holds the access attributes associated to the account. In order to protect

account data from being accessed by any unauthorized service from the private510

processing cloud, it is stored in a local private database which can only be

queried through the private database connector microservice from within the

trusted component.

The third service of the trusted component is the crypto service. It performs

all encryption and decryption operations required in order for other services in515

the private processing cloud to be able to process and store sensitive data. The

operations supported by this microservice especially encompass encryption and

decryption with CP-ABE as well as symmetric cryptography with AES.

4.2.2. Data processing workflow

Having introduced the tasks performed by the services forming the trusted520

component, the next step is to show how other services implemented in the

private processing cloud work together and use the trusted component in order

to store and process sensitive data in a secure way. To show the typical data

flow in our system design, we use the example of an application capable of

performing risk assessment for urban areas based on geospatial and empirical525

data that has been implemented based on our approach (see Section 5.1).

Account generation and authentication. In order to access any resource provided

by the Smart City cloud, urban planners need user accounts. While we’re not

discussing account generation strategies as part of this paper, our approach

assumes that after successful account generation the following information is530

available to the authentication service:

• ID: A unique user ID.

• Email: The user’s email address.

• Password: The hashed user password.

• Applications: A list of Smart City cloud applications the user is allowed535

to access.
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• Private Key: The private key of the user, generated with CP-ABE

under the user’s access attributes. The key is encrypted using the user’s

password.

After successful account creation the urban planner can access the appli-540

cation through its web interface. To be able to use the application, the urban

planner needs to authenticate first. In order to handle authentication and autho-

rization for all available Smart City cloud applications, our system implements

a Single Sign-On (SSO) authorization system based on OAuth2. This enables

users to authenticate only once and use all applications associated with their545

user accounts without requiring them to enter their credentials each time they

access a different application.

When accessing the first application, the user’s browser is redirected to a

login page provided by the authentication service where the user credentials

are entered and submitted to the authentication service along with a URL the550

browser should redirect to after successful authentication. The authentication

service verifies the user credentials by comparing the hashed password provided

by the user to the hashed user password stored in the private account database.

Using the redirection URL, the authentication service also verifies the authen-

ticity of the web application the user has requested login from. It is checked555

whether the application is a trusted application implemented in the Smart City

cloud and whether the user has access to this particular application based on

the list of allowed applications stored upon account creation.

Upon success, the authentication service issues an access token indicating

that the user is allowed to access Smart City cloud resources using the web560

application that initiated the login. Additionally, the authentication service

uses the password provided by the user in order to decrypt the private key

associated with the user account. The decrypted key is stored only for the

length of the user’s session along with the current access token and the session

expiration time.565
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Figure 4: The secure data retrieval process of a web application implemented in the Smart

City cloud.

After successful login, the browser of the user is redirected to the front page

of the risk assessment web application. In the process, the user’s access token

is passed to the application.

Secure data access from applications. In order for the risk assessment applica-

tion to actually load risk assessment data for the user currently logged in, the570

previously transmitted access token is used as shown in Figure 4. The web por-

tal sends a request containing the user’s access token for the metadata items of

the data to be loaded which is forwarded to a cloud storage connector service

1 . The service then retrieves the encrypted metadata from the public cloud

storage. In order to present the user with decrypted data, the metadata is575

then forwarded to the crypto service along with the access token 2 . Since the

crypto service is part of the trusted component (see section 4.2.1), it has access

to the user’s account information. In order to decrypt the CP-ABE encrypted

metadata item, the crypto service requires the user’s private key. To retrieve it,
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it queries the local database connector, which is also part of the trusted com-580

ponent, using the access token 3 . The local database connector replies with

the decrypted private key of the user if the user’s session is still active 4 . The

crypto service then attempts to decrypt the encrypted metadata item with the

private key. If the access attributes of the user embedded in the key match the

access policy embedded in the ciphertext of the metadata item, the decryption585

will succeed. If the user’s private key doesn’t match the access policy required

to access the encrypted data, decrypting the metadata item will fail and the

user won’t be granted access to the requested data. In case the user’s private

key does match the set access policy and decrypting the metadata item suc-

ceeds, the decrypted metadata is being used to query the public cloud storage590

connector again for the actual data 5 . The actual data is then passed to the

crypto service for symmetric decryption with the symmetric key contained in

the previously decrypted metadata item 6 . The service performs the decryp-

tion and replies with the decrypted data which upon success is then forwarded

to the web portal 7 .595

If risk assessment data has been created or altered through the web portal,

the results need to be properly encrypted before they can be securely stored

in the public cloud. To store the data securely in the public cloud, the web

portal needs to pass the data to the crypto services that generates a symmetric

key and encrypts the data with it. The service replies with the encrypted data600

along with the symmetric key. Then a new metadata item is being created

which is then passed to the crypto service along with the desired access policy.

The crypto service uses CP-ABE in order to encrypt the metadata item under

the given policy before passing the result to the public cloud connector in order

to store the symmetrically encrypted data as well as the CP-ABE encrypted605

metadata item.

4.3. Interfaces

To prevent unauthorized access to protected data from other parties than

the public cloud provider, our Smart City cloud architecture needs to properly
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protect its interfaces. As we have already outlined, our architecture implements610

an SSO approach in order to properly authenticate users before authorizing

them to access protected data. To prevent common Man-in-the Middle attacks

aiming to learn user secrets, all communication to and from the web interface

uses the HTTPS protocol and is therefore encrypted with TLS/SSL.

This does not only protect the user’s credentials during authentication, but615

also the access token from unauthorized access. The token is always required

when an operation provided by the web interface of the Smart City cloud is

being accessed. The web service to be invoked passes it to the authentication

service with every incoming request in order to verify that the user the access

token has been issued to actually has access to the queried web service.620

Inside the Smart City cloud, all calls to the trusted component also require

passing the user’s access token in order to, for instance, decrypt protected data

retrieved from the public cloud storage connector. Except for the described

functionalities to verify access tokens and request decryption of user data, the

trusted component does not provide any further services to other microservices625

implemented in the private processing cloud in order to protect the user account

data from being accessed or altered by other microservices.

5. Evaluation

The main contribution of this paper is the software architecture design pre-

sented in Section 4. In the following, we first show the feasibility of our design630

based on an example implementation of a real-world use case (Section 5.1). We

further evaluate our software architecture based on qualitative criteria (Sec-

tion 5.2) and measure the performance of our encryption scheme (Section 5.3).

Finally, we critically discuss the security of our approach (Section 5.4).

5.1. Implementation635

In this Section, we describe a web application that is designed to support

urban planners in the process of identifying and ultimately reducing security
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Figure 5: The components of our example application and how the are deployed to a private

and a public cloud

risks in urban areas. It makes use of the VITRUV Tool which is a software

performing risk assessment based on digital city models as well as historical

data [32]. The VITRUV Tool creates a visualization indicating, for instance,640

the vulnerabilities and susceptibilities of buildings with regards to actions with

criminal intent such as burglaries or even bombings. The VITRUV Tool pro-

vides many possibilities for municipalities and other authorities concerned with

urban security. First, its risk assessment results can be used to identify exist-

ing vulnerable spots in urban centers to, for instance, mitigate consequences of645

terrorist attacks. Another use case of the VITRUV Tool is in the process of

planning of new structures, in particular when considering their security. Risk

assessment results can be used to evaluate the best spots for new potentially en-

dangered buildings such as embassies. A third use case is the evaluation of safe

spots for upcoming public events such as speeches, demonstrations and festivals.650

Because the risk assessment calculations performed by the VITRUV Tool

are quite complex, they should not be run on desktop computers but rather

dispatched to scalable cloud resources. This however leads to the problem that

sensitive data needs to be stored and processed on untrusted cloud resources.

Since it is possible that parties with malicious intent might also be interested655
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Figure 6: Screenshot of our web application for urban risk assessment

in information on building vulnerabilities, all data that is stored and processed

by such a cloud-based application needs to remain confidential at all times.

In order to achieve both scalable calculations and secure data processing,

this web application has been implemented using the system design we have pre-

sented in this paper (see Section 4 and in particular Figure 1). Figure 5 shows660

the architecture of our application and how its microservices are deployed to a

private and a public cloud. The web application consists of a user-interface run-

ning in a web browser and a set of microservices. The functionalities provided

by the VITRUV Tool are also wrapped in a microservice that can be queried

using HTTPS. In addition, there is the trusted component consisting of au-665

thentication service, crypto service and private database connector (individual

services not shown in the Figure, see Section 4.2.1).

All of these microservices are deployed in the private processing cloud. We

implemented the services with Vert.x [33], a toolkit for building reactive appli-

cations on the Java Virtual Machine. The crypto service utilizes the libbswabe670

library by Bethencourt et al. [31] for CP-ABE encryption and decryption oper-

ations. The overall web application functionality can be accessed via an HTTPS
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Figure 7: Our web application with 3D buildings colored according to the result of the risk

assessment

interface again provided by a microservice. In order to protect sensitive data

also in transfer to and from the user, all external communication to and from the

HTTP interface is protected through TLS/SSL. The microservices communicate675

with each other over secure channels.

Figures 6 and 7 show screenshots of our final web application. Whenever

urban planners want to start a risk assessment calculation, they need to upload

a digital city model first. The uploaded data is encrypted before it is being

forwarded to the cloud storage. A subset of the uploaded data is sent over a680

secure channel to the VITRUV service. Once the risk assessment is finished, the

results are fetched from the VITRUV service and stored securely in the public

cloud.

The urban planner is kept updated about the risk assessment’s status by

our web application and can request the results through the web portal once685

they are ready. Accessing the result data from the web portal then works as

outlined in Section 4.2.2. Finally, the data is converted to a 3D scene that can be
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visualized in the web browser. We use the Open Source framework Cesium [34]

to visualize geospatial data through WebGL.

5.2. Qualitative evaluation690

After showing the applicability of our architecture design in the previous

section we now evaluate it conceptually. For this, we go back to the requirements

of Smart Cities described in Section 2.1 and show how they can be mapped to

the properties of our architecture.

Smart Cities have a need for on-demand self service (Section 2.1.1). On695

the one hand, this requirement is satisfied by the cloud that allows users to

unilaterally acquire computing resources. On the other hand, this only applies

to the service models offered by the cloud provider (often only IaaS and PaaS)

but not to the software itself. Our architecture design represents a template to

create secure applications that allow end-users such as urban planners or other700

members of the municipality to leverage the possibilities of the cloud without

having to care about technical details or how to keep their data secure. As

shown in Section 5.1, it is possible to implement an application where users can

assess urban risks on-demand and unilaterally.

In this respect, we note that the microservice architectural style allows for705

creating highly available applications that are tolerant to faults. Individual mi-

croservices can be deployed redundantly so that if one instance fails, another

one can take over. The Vert.x framework we used in our implemented applica-

tion offers a high-availability feature with automatic fail-over. This is necessary

to implement unilaterally on-demand self service.710

The requirements broad network access (Section 2.1.2) and resource pooling

(Section 2.1.3) are generally satisfied by the cloud and not by our architecture

design per se. However, we can combine them with our architecture’s scalability

to achieve the other requirement rapid elasticity (Section 2.1.4). Our design

allows individual microservices to be deployed redundantly, not only for fault715

tolerance as mentioned above, but also to increase performance and throughput.

If the number of instances of a service scales with the number of users (i.e.
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resource pooling), we can implement rapid elasticity by deploying a load balancer

that distributes requests to these instances. Due to our encryption scheme and

the broad network access offered by the cloud, we can process large amounts of720

data with a reasonable performance (see Section 5.3).

Our architecture does not include specific monitoring and billing services

that, for example, measure how many times the VITRUV service has been used

or how much data was encrypted. Such services are beyond the scope of this

paper. Regarding the requirement measured service, we therefore need to rely725

on the mechanisms provided by the cloud providers.

In summary, the microservice approach and our architecture design fit quite

well to the concepts of a Smart City. They allow for better scalability and

modularity facilitating simplified development and a shorter time-to-market.

Individual (small) services can be developed and provided to citizens and inter-730

ested parties in a short amount of time. Outdated services can be removed or

replaced quickly by new versions. All of this supports the aim of Smart Cities

to create a constantly evolving environment worth living in.

As described earlier in this paper, the public cloud offers many benefits

to Smart Cities, in particular in terms of scalability, performance, and cost-735

effectiveness. However, in our architecture security-related computations have

to be done in a private cloud which has to be maintained by the city itself or by

a trusted company that is subject to the same legislation as the city. Managing

an own cloud infrastructure takes efforts and can be costly for the city. Nev-

ertheless, we expect that the infrastructure needed for our trusted component740

can be relatively small compared to the larger public cloud. Computations on

non-sensitive data can still be performed in the public cloud. Due to the fact

that our architecture is based on microservices, most parts of the web applica-

tion can be put in the public cloud as long as they do not deal with sensitive

data. This enables the Smart City to leverage the benefits of the public cloud745

while keeping the sensitive parts of the application in a protected environment.
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5.3. Encryption performance

In this Section, we present the results from a benchmark we performed to

test the performance of our encryption scheme. In our approach, we encrypt

small metadata items with CP-ABE and actual Smart City data symmetrically.750

We compare this to plain CP-ABE applied to the data as a whole. As explained

in Section 5.1, we use the CP-ABE implementation libbswabe by Bethencourt

et al. [31].

For the benchmark, we set up an environment consisting of the a private

OpenStack cloud operated by our research institute and Amazon Web Services755

(AWS). We deployed our trusted component to the OpenStack cloud and con-

figured the public cloud connector to use the object store Amazon S3 for large

Smart City datasets and the database Amazon DynamoDB for metadata items.

Since our private cloud was located in Darmstadt, Germany, we chose the closest

AWS region ‘eu-central-1’ in Frankfurt, Germany.760

The test data was a subset of an open dataset provided by the German fed-

eral state of North Rhine-Westphalia “Land NRW (2018)” licensed under the

dl-de/by-2-0 (Datenlizenz Deutschland - Namensnennung - Version 2.0, www.

govdata.de/dl-de/by-2-0) available at https://www.opengeodata.nrw.de/

produkte/geobasis/3d-gm/3d-gm_lod2/. The file “3d-gm lod2 05315000765

Köln EPSG25832 CityGML.zip” contained the 3D city model of Cologne di-

vided into multiple tiles in the CityGML format (Level of Detail 2). It had a

size of 4 GB. We selected 100 representative files from this archive with a total

size of 2,088 MB. The individual file sizes ranged from 3.6 MB to 50 MB. The

average file size was 20.37 MB. The median was 21.5 MB.770

We ran the following five tests for each approach (ours and plain CP-ABE):

1. Encrypt and upload the dataset. We assigned CP-ABE policies to the

encrypted files alternating between an attribute a1 and another one a2.

This means that 50 out of 100 files required a1 to be present in the user’s

attribute set and the other 50 required a2.775
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2. Download and decrypt with a1. We created a user possessing a1 and then

tried to download and decrypt all files. With a1 it should be possible to

decrypt 50 files only.

3. Download and decrypt with a2. We created another user possessing a2.

This user should be able to decrypt the other 50 files.780

4. Download and decrypt with both attributes. The third user possessed a1

and a2 and should be able to download all files.

5. Download and decrypt without attributes. The fourth user had no at-

tributes and should not be able to access any files.

We measured the times for encryption and decryption (both CP-ABE and785

symmetric AES), the upload and download times, as well as the number of bytes

transferred during upload and download of the actual 3D city model and the

metadata. Note that the benchmark was executed inside the trusted compo-

nent, so all numbers for upload and downloads times as well as the data sizes

relate to data transfer between our private cloud and the public cloud. We did790

not examine the communication between our web application and the trusted

component since the performance would be the same regardless of the chosen

approach.

Table 8 shows the numbers recorded during upload. As we can see trans-

ferred data sizes are the same, but our approach also needs to upload the ad-795

ditional metadata items to DynamoDB. However, the overhead is very small

compared to the size of the actual dataset and does not affect the (rounded)

sum of transferred data sizes. The sum of upload times for data and metadata

in our approach almost matches that of plain CP-ABE (with small fluctua-

tions in the upload rate). The sum of the encryption times with CP-ABE (for800

metadata) and AES (for the actual data) in our approach is lower than that of

plain CP-ABE. The small difference is in line with the observations made by

Bethencourt et al. [31].

Tables 9 and 10 show the results from downloading the data with our ap-

proach an plain CP-ABE respectively. Again, our decryption takes less time805
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Our approach Plain CP-ABE

AES encryption time 7.0 s –

CP-ABE encryption time 2.3 s 16.4 s

Data upload time 112.9 s 118.9 s

Metadata upload time 2.9 s –

Data upload size 2,088 MB 2,088 MB

Metadata upload size 97.6 KB –∑
encryption times 9.3 s 16.4 s∑
upload times 115.8 s 118.9 s∑
upload sizes 2,088 MB 2,088 MB

Figure 8: Benchmark results from uploading the dataset with our approach and plain CP-ABE

than plain CP-ABE. The main difference is the number of bytes downloaded.

The tables show that, with our approach, a lot less data needs to be downloaded

and the overall process is therefore much faster. With plain CP-ABE, every file

has to be downloaded from the public cloud before its policy can be validated.

With our approach, we can save bandwidth by only downloading those files810

that have a policy matching the user’s attributes. We still need to download

all metadata items, but this overhead is very small compared to the size of the

whole dataset.

In summary, our approach is faster than plain CP-ABE in all cases. Even

if we have to download the whole dataset, our encryption and decryption take815

less time.

In addition, our encrypted metadata items can hold more information than

just the symmetric key. We can also store the dataset’s author (or owner), the

creation date, quality attributes, or anything else that could be relevant for

the secure Smart City application. The application has therefore direct access820

to the stored metadata attributes and can use them without downloading the

whole dataset from the object store.
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a1 a2 a1 and a2 (none)

AES decryption time 1.0 s 1.2 s 1.8 s 0.0 s

CP-ABE decryption time 1.1 s 1.1 s 1.3 s 0.8 s

Data download time 22.4 s 19.3 s 42.1 s 0.0 s

Metadata download time 2.9 s 3.1 s 4.8 s 2.0 s

Data download size 1,045 MB 1,043 MB 2,088 MB 0 MB

Metadata download size 97.6 KB 97.6 KB 97.6 KB 97.6 KB∑
decryption times 2.1 s 2.3 s 3.1 s 0.8 s∑
download times 25.3 s 22.4 s 46.9 s 2.0 s∑
download sizes 1,045 MB 1,043 MB 2,088 MB 97.6 KB

Figure 9: Benchmark results from downloading the dataset with our approach by different

users possessing a1, a2, a1 and a2, as well as no attributes (download rates fluctuated slightly)

a1 a2 a1 and a2 (none)

CP-ABE decoding time 8.0 s 7.8 s 13.9 s 1.5 s

Data download time 49.4 s 44.0 s 49.3 s 43.7 s

Data download size 2,088 MB 2,088 MB 2,088 MB 2,088 MB

Figure 10: Benchmark results from downloading the dataset with plain CP-ABE (download

rates fluctuated slightly)

5.4. Security discussion

We now discuss aspects related to the introduced security measures regarding

honest-but-curious cloud providers as well as attackers trying to access user data825

through eavesdropping.

Data in our system can be stored in two ways. Sensitive user information

is stored within the trusted component. This data is only utilized inside the

trusted component and can therefore not be leaked to eavesdropping attackers

or curious cloud providers. Data stored using public cloud storage are CP-830

ABE-encrypted metadata items as well as the AES-encrypted data items. They

can not be accessed by eavesdropping attackers and cloud providers since keys

to decrypt the data are only being utilized in the trusted component. The
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only information cloud providers can gather in our system design are relations

between metadata items and actual data items by tracking access patterns to835

both kind of files.

To keep sensitive data private, we encrypt it using CP-ABE with symmetric

encryption. However, when data is encrypted, sharing it can become an issue.

In our scenario, it is quite likely that multiple urban planners from one or

even multiple municipalities need to share data in order to perform different840

risk assessment calculations and share experience regarding effective security

measures. Sharing encrypted data often involves finding solutions for managing

and sharing multiple keys which can lead to new issues regarding data security.

In CP-ABE, however, we only have to protect one private key per user that

contains their access policies, whereas access policies are safely embedded in845

metadata items pointing to the actual encrypted files. We also do not need any

further keys for managing organizations since that information would be part

of the user’s attribute set that is used to generate the private key. Not using

organization keys also saves us a significant amount of encryption operations

and storage since in such an approach files would also have to be encrypted850

multiple times with each organization key [24]. It would also make it difficult

to share data between organizations and single users, whereas in our approach,

the metadata item of the file to be stored just have to be re-encrypted with

an access policy that also matches the attributes of users to share the data

with. However, if the access attributes of a user change, for instance when855

switching organizations, we just have to generate a new private key for that

user reflecting the new set of access attributes. Since the key is handled by

our trusted component, a complicated revocation mechanism is not required for

such a case.

The major drawback of using CP-ABE is the performance overhead it intro-860

duces. As the performance study by Bethencourt et al. [31] shows, its perfor-

mance depends highly on the complexity of the access policy of the encrypted

files. This means if complex access policies are required to enable sharing data

between municipalities and users, the encryption and decryption processes of
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shared files will slow down the overall system. However, since with our ap-865

proach, we only have to encrypt small metadata items instead of the actual files

that need to be shared, this overhead is still moderate.

6. Conclusions

In this article, we presented a system architecture to protect data in Smart

City clouds. We first discussed the motivation of Smart Cities to use the cloud870

and the security issues that may result from that. We then compared related

work to our approach and presented our architecture design as well as the se-

curity measures we apply. Finally, we presented results from implementing a

real-world application for urban risk assessment based on our design. We evalu-

ated our architecture quantitatively based on the requirements of Smart Cities.875

We also measured the performance of our encryption scheme and critically dis-

cussed the advantages and disadvantages of our approach.

With the implementation, we were able to show that our architecture design

fits well to a real-world Smart City application. Our approach to securing data

in the cloud covers many security aspects and can be employed flexibly. The880

microservice architectural style opens a number of possibilities to integrate our

system design into existing infrastructures. Our services have lightweight inter-

faces and communicate over HTTP. Each individual service has a manageable

size and serves a specific purpose. This enables better maintainability, a shorter

time-to-market, as well as improved flexibility and scalability.885

Combining a private cloud with the public cloud enables Smart Cities to

protect sensitive data while leveraging the possibilities of a distributed environ-

ment at the same time. The public cloud offers many benefits (as described in

section 2.1) but can become a security risk if sensitive data needs to be pro-

cessed or stored. The private cloud, on the other side, is a safe environment890

for any data that needs protection against unauthorized access. Managing a

private cloud in addition to the public one means further effort and costs, but
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since the major part of data a Smart City deals with is non-sensitive the private

infrastructure can be considerably smaller than the public one.

As our performance evaluation has shown, our approach to encrypt data895

and to separate metadata items from the actual Smart City data is faster than

plain CP-ABE in all cases. In most cases, the number of bytes that need to be

transferred is much smaller so that our approach is significantly faster than the

existing one.

The encryption scheme we applied in our approach protects sensitive data900

against honest-but-curious cloud providers as well as attackers trying to access it

through eavesdropping. In particular, in our example application, CP-ABE has

proven to be quite useful because it allows for sharing datasets and computation

results between different parties—in our case multiple departments of the same

municipality.905

7. Future Work

In order to further improve data confidentiality in a real-world scenario, it

remains as future work to evaluate the security of our approach and our devel-

oped web application against active attacks on the system. Common attacks

that should be considered in the evaluation include Man-in-the-Middle attacks,910

Cross-Site Scripting and DDoS attacks.

In addition, it would be worthwhile investigating data integrity approaches.

Our system design only keeps data confidential but does not provide means

to test if the protected data has been modified or is still complete. In our web

application, this would help make sure users receive valid risk assessment results915

at all times.

In parallel to this work, we also investigated the use of implementing encryp-

tion directly in the data store while still allowing operations such as importing,

deleting and—most importantly—querying without leaking information about

the query itself and its results [35]. We extended the geospatial data store920
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GeoRocket [36] with dynamic searchable symmetric encryption. Combining

this approach with CP-ABE as presented in this paper is still open future work.

We will continue our work on the microservice architectural style and how

it can be applied to the cloud paradigm. In previous work we have presented

a workflow management solution for the processing of large geospatial data925

in the cloud [37, 11]. We implemented the workflow manager as well as the

individual processing algorithms as microservices to achieve best scalability and

fault tolerance.

The same applies to our work on microservices in the context of Smart Cities.

We are currently working on a platform for participatory urban governance930

within the EC-funded project smarticipate [38]. This platform is based on

microservices and runs in the cloud. The security scheme presented in this work

could be integrated in this platform to protect sensitive data about citizens or

the urban infrastructure.

We did not investigate the use of our approach for other network infrastruc-935

tures such as Smart Grids, Internet of Things (IoT), or fog computing yet. Our

approach has been specifically designed for web applications running in dynamic

cloud environments such as Amazon Web Services (AWS), Microsoft Azure, the

Google Cloud Platform, as well as private clouds.
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[4] J. Dambruch, M. Krämer, Leveraging public participation in urban plan-

ning with 3D web technology, in: Proceedings of the Nineteenth Interna-

tional ACM Conference on 3D Web Technologies (Web3D), Web3D ’14,

ACM, New York, NY, USA, 2014, pp. 117–124. doi:10.1145/2628588.955

2628591.

[5] D. Ludlow, Z. Khan, Participatory democracy and the governance of smart

cities, in: 26th Annual AESOP Congress, Ankara, Turkey, 11th - 15th July,

2012.

[6] D. H. Hoang, T. Strufe, Q. D. Le, P. T. Bui, T. N. Pham, N. T. Thai, T. D.960

Le, I. Schweizer, Processing and visualizing traffic pollution data in Hanoi

City from a wireless sensor network, in: 38th Annual IEEE Conference on

Local Computer Networks - Workshops, 2013, pp. 48–55. doi:10.1109/

LCNW.2013.6758497.

[7] B. Sirmacek, R. Lindenbergh, Automatic classification of trees from laser965

scanning point clouds, ISPRS Annals of Photogrammetry, Remote Sensing

and Spatial Information Sciences II-3/W5 (2015) 137–144. doi:10.5194/

isprsannals-II-3-W5-137-2015.
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[11] M. Krämer, A microservice architecture for the processing of large geospa-980

tial data in the cloud, Ph.D. thesis, Technische Universität Darmstadt

(2018). doi:10.13140/RG.2.2.30034.66248.

[12] P. M. Mell, T. Grance, SP 800-145. The NIST Definition of Cloud Com-

puting, Tech. rep., National Institute of Standards & Technology, Gaithers-

burg, MD, United States (2011).985

[13] J. Temperton, Bristol is making a smart city for actual humans, http://

www.wired.co.uk/article/bristol-smart-city, [Online; accessed 20-

Feb-2018] (2015).

[14] M. Nanavati, P. Colp, B. Aiello, A. Warfield, Cloud security: A gathering

storm, Commun. ACM 57 (5) (2014) 70–79. doi:10.1145/2593686.990

[15] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, L. Lo Ia-

cono, All your clouds are belong to us: Security analysis of cloud man-

agement interfaces, in: Proceedings of the 3rd ACM Workshop on Cloud

Computing Security Workshop, CCSW ’11, ACM, New York, NY, USA,

2011, pp. 3–14. doi:10.1145/2046660.2046664.995

[16] M. Vianden, H. Lichter, A. Steffens, Experience on a microservice-based

reference architecture for measurement systems, in: 2014 21st Asia-Pacific

Software Engineering Conference, Vol. 1, 2014, pp. 183–190. doi:10.1109/

APSEC.2014.37.

[17] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano,1000

R. Casallas, S. Gil, C. Valencia, A. Zambrano, M. Lang, Infrastructure cost

comparison of running web applications in the cloud using aws lambda and

40

http://dx.doi.org/10.1080/17538947.2011.587547
http://dx.doi.org/10.13140/RG.2.2.30034.66248
http://www.wired.co.uk/article/bristol-smart-city
http://www.wired.co.uk/article/bristol-smart-city
http://www.wired.co.uk/article/bristol-smart-city
http://dx.doi.org/10.1145/2593686
http://dx.doi.org/10.1145/2046660.2046664
http://dx.doi.org/10.1109/APSEC.2014.37
http://dx.doi.org/10.1109/APSEC.2014.37
http://dx.doi.org/10.1109/APSEC.2014.37


monolithic and microservice architectures, in: 2016 16th IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid),

2016, pp. 179–182. doi:10.1109/CCGrid.2016.37.1005

[18] A. Krylovskiy, M. Jahn, E. Patti, Designing a smart city internet of

things platform with microservice architecture, in: 2015 3rd International

Conference on Future Internet of Things and Cloud, 2015, pp. 25–30.

doi:10.1109/FiCloud.2015.55.

[19] Z. Khan, A. Anjum, S. L. Kiani, Cloud based big data analytics for smart1010

future cities, in: Proceedings of the 2013 IEEE/ACM 6th International

Conference on Utility and Cloud Computing, UCC ’13, IEEE Computer

Society, Washington, DC, USA, 2013, pp. 381–386. doi:10.1109/UCC.

2013.77.

[20] Z. Khan, Z. Pervez, A. Ghafoor, Towards cloud based smart cities data1015

security and privacy management, in: IEEE/ACM 7th International Con-

ference on Utility and Cloud Computing, 2014, pp. 806–811. doi:10.1109/

UCC.2014.131.

[21] M. Li, S. Yu, Y. Zheng, K. Ren, W. Lou, Scalable and secure shar-

ing of personal health records in cloud computing using attribute-based1020

encryption, IEEE Trans. Parallel Distrib. Syst. 24 (1) (2013) 131–143.

doi:10.1109/TPDS.2012.97.
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