
STAG: Smart Tools and Applications in Graphics (2020)
S. Biasotti, R. Pintus and S. Berretti (Editors)

A system for fast and scalable point cloud indexing using task
parallelism

Pascal Bormann1,2 and Michel Krämer1,2

1Fraunhofer Institute for Computer Graphics Research IGD, Fraunhoferstr. 5, 64283 Darmstadt, Germany
2Technical University of Darmstadt, 64289 Darmstadt, Germany

Abstract
We introduce a system for fast, scalable indexing of arbitrarily sized point clouds based on a task-parallel computation model.
Points are sorted using Morton indices in order to efficiently distribute sets of related points onto multiple concurrent indexing
tasks. To achieve a high degree of parallelism, a hybrid top-down, bottom-up processing strategy is used. Our system achieves
a 2.3x to 9x speedup over existing point cloud indexing systems while retaining comparable visual quality of the resulting
acceleration structures. It is also fully compatible with widely used data formats in the context of web-based point cloud visu-
alization. We demonstrate the effectiveness of our system in two experiments, evaluating scalability and general performance
while processing datasets of up to 52.5 billion points.

CCS Concepts
• Computing methodologies → Parallel algorithms; • Information systems → Extraction, transformation and loading;

1. Introduction

Point clouds are an important tool for the representation of objects
from the real world. With the advent of cheap, high-quality laser
scanners and the rising popularity of drones for data capturing,
point cloud data has found its way into an increasing number of
applications, both for data analysis and visual exploration. The na-
ture of point clouds as a volumetric geometry representation often
results in significantly larger datasets compared to polygon-based
geometry representations. This increased data size poses several
challenges for systems that visualize point clouds: Since only a
fraction of the full dataset can usually be held in memory, rele-
vant data has to be fetched from disk or a remote server dynami-
cally using out-of-core techniques. In this context, spatial acceler-
ation structures play a crucial role in enabling interactive render-
ing of large point clouds. The best spatial acceleration structures
for point clouds provide fast access to specific sections of the data
when viewing it up close, while at the same time enabling access
to subsampled versions when viewing it from far away. This pro-
cess is known as Level of detail (LOD) and has been studied in the
context of point cloud visualization by Scheiblauer [Sch14] and
later by Schütz [Sch16] who adopted it into the widely used web-
visualization tool Potree [pota].

The creation of a good spatial acceleration structure that supports
LOD, a process called indexing, is computationally expensive due
to two main factors: First, point cloud datasets are often very large:
With billions of points in a single dataset, it is common to deal
with hundreds of Gigabytes or even Terabytes of data. While the

size of such datasets is the reason for creating out-of-core capable
acceleration structures, it also means that any process that creates
such an acceleration structure has to be out-of-core capable as well.
Since out-of-core algorithms use slow external memory to store in-
termediate results, their runtimes are usually slower than in-core
algorithms. Second, to enable LOD, lower resolution versions of
the point cloud have to be computed from the full resolution point
cloud. This is often realized through sampling procedures that se-
lect points based on a minimum distance to each other, resulting
in uniform subsamples with good visual quality. This subsampling
process is challenging because raw point cloud data is most of-
ten unsorted, containing no spatial relationships between individual
points. Identifying points within a minimum distance to each other
therefore is equal to a search in unsorted data. Using spatial accel-
eration structures thus shifts the computational burden away from
the rendering process and towards the preprocessing system. While
this shift is a beneficial one, seeing that the creation of an acceler-
ation structure has to be done just once for a static point cloud, it
still has drawbacks: The necessary preprocessing step is time- and
resource-consuming and introduces a delay before the data is ready
to be used.

In this work, we describe a system for creating visualization-
optimized acceleration structures for point cloud data that ad-
dresses these challenges of data volume and delay before the data
can be used. For the indexing process, the system utilizes a novel
data-parallel algorithm, which is based on a hybrid approach com-
bining top-down and bottom-up processing. Compared to existing
systems, this approach achieves a higher performance and scalabil-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/stag.20201250 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6687-0082
https://orcid.org/0000-0003-2775-5844
https://doi.org/10.2312/stag.20201250

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

ity because it allows individual tiles to be processed independently
by multiple threads in parallel.

Existing systems tend to be either fast but tailored to a specific
rendering system, or slow but usable with popular and standard-
ized rendering systems. We therefore set out to create a system that
covers both use cases and satisfies the following goals:

1. Performance: The system must be able to achieve significantly
better performance than the state of the art, while maintaining
comparable visual quality.

2. Compatibility: The system has to support common data for-
mats. In particular, it has to support both the widely-used Potree
system as well as the standardized file format 3D Tiles [ces]. A
noteworthy non-goal is the optimization of system performance
through usage of bespoke file formats. Ideally, our system should
be a drop-in replacement for other point cloud indexing tools.

3. Hardware-agnostic: The system should make best use of the
available hardware. We want to achieve significant performance
benefits both on modern systems with dozens of threads and fast
solid-state-drives (SSDs) as well as on systems with slower hard-
disk-drives (HDDs).

The remainder of this paper is structured as follows: In section 2
we give an overview of related work in the area of spatial accel-
eration structures for point clouds. Section 3 describes the design
of our system, covering the three main observations that enable our
systems performance. We also cover several important implemen-
tation details in section 4. In section 5 we evaluate the performance
and quality of our system compared to other widely used point
cloud indexing systems and then discuss these results in section 6.
Section 7 concludes this paper and gives an outlook for future work.

2. Related work

The two main acceleration structures used for out-of-core point
cloud visualization are kd-trees and octrees. These structures are
common and well-understood in literature but have their own
unique benefits and challenges when applied to point cloud data.
While this paper focuses on octrees, it is worth understanding the
applicability of both acceleration structures, which motivates our
decision to generate octrees over kd-trees.

kd-trees are generally able to adapt better to irregular data,
whereas octrees are simpler to create and handle due to their reg-
ular nature. One challenge while building kd-tree accelerators is
the selection of the split plane position, which either requires a
full scan of all points for each split plane, or spatial sorting of the
points to quickly find the median position along an axis. These ap-
proaches are not applicable to large point clouds due to their sheer
size. Multiple linear searches through billions of points are slow,
and sorting is not trivially possible because the whole data very
often does not fit completely into memory. To solve this problem,
histogram-based approaches have been used to find approximate
positions for the split planes [RDD15, BGM∗12]. Goswami et al.
used a different approach by introducing a kd-tree variant that has
multiple split planes along each axis, which allows the creation of
accelerators with uniform sized nodes [GZPG10]. The more uni-
form nature of kd-trees has benefits for out-of-core rendering on a
single machine, as it enables fast selection of visible subsets from

the point cloud, which can be swapped in and out of GPU memory,
enabling good visual quality even for highly interactive applica-
tions like VR [DMS∗18].

The situation is different when the point cloud data does not re-
side on the local machine but instead on a remote server. Here,
octrees are used more prominently, which is in part due to the work
by Scheiblauer [Sch14] where he introduced the modifiable nested
octree data structure. It is based on partitioning the point cloud into
an octree with each node containing a subsample of the original
point cloud, where nodes closer to the root contain sparser sub-
samples and deeper nodes contain more dense subsamples. This
works well with web-based point cloud visualization, as LOD is
already part of the data structure and as such, selecting a repre-
sentative visual subset for a given view can be realized by simply
requesting octree nodes of different sizes and streaming the full
content of these nodes to the client. Based on this work, the widely
used Potree [pota] system was developed by Schütz [Sch16], which
also contains the potree-converter tool [potb] for generating the
required octree acceleration structure from raw point cloud data.
Schütz also illustrated different possible strategies for subsampling
the point cloud with different visual characteristics [Sch16, sec-
tion 3.3.1]. potree-converter uses a form of Poisson-disk sampling
[Bri07], which yields good visual quality but is computationally
expensive. Another system for generating octree acceleration struc-
tures from point cloud data is Entwine [ent]. It uses a similar ap-
proach to potree-converter but selects point samples based on their
distance to cells in a grid, favoring points closer to the center, which
is more computationally efficient compared to Poisson-disk sam-
pling. It is worth noting that there is significant development of the
potree-converter tool currently ongoing, with the aim of increasing
performance and optimizing the resulting file structure [SOW20].

An efficient way to build octrees in general is through the usage
of the Z-order curve, a space-filling curve that emerges as the re-
sult of sorting points based on their Morton index [Mor66]. Using
this technique, Karras derived fully parallel algorithms for creat-
ing octrees, kd-trees and bounding volume hierarchies for arbitrary
primitives [Kar12]. While powerful, these algorithms do not take
LOD into consideration, making them less useful in the context of
point cloud visualization. Here, Elseberg et al. [EBN13] provide a
simple algorithm based on sorting points by Morton index to create
an octree in log-linear time. While they do not consider paralleliz-
ing the computation, the concept of their algorithm - recursively
subdividing a range of sorted points - is one of the building blocks
of the underlying indexing algorithm that our system uses.

In the context of parallelized point cloud processing, the work by
Alis et al. is particularily noteworthy, as they identified the potential
for sorting point clouds using Morton indices to distribute process-
ing over multiple worker nodes in a network [ABL16]. Partitioning
points based on spatial locality allowed Alis et al. to speed up a
k-nearest-neighbour algorithm. We build upon this approach and
extend it to the parallelized creation of spatial acceleration struc-
tures for point clouds.

3. Design of our system

At the highest level, our system processes the whole point cloud in
fixed-sized chunks called batches, so that each batch can be held

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

154

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

and processed entirely in memory. A single batch is made up of
a fixed number of points read sequentially from the source files.
The results of processing a batch are immediately stored on disk
and can be temporarily loaded from disk during the processing of
subsequent batches, thus enabling out-of-core processing of arbi-
trarily large point clouds. Within a batch, each point is assigned to
one specific octree node. From all points that fall into the bound-
ing box of the node, the sampling method selects a representative
subset of points for this node. The sampling methods in our system
are the ones present in both Entwine and potree-converter, namely
grid-center sampling and Poisson-disk sampling. Since the sam-
pling process is computationally expensive, the main design prin-
ciple of our system is to aim for a high degree of data parallelism,
so that each logical core on the target machine can always be satu-
rated with sampling points. We are able to achieve this by making
three observations:

1. The indexing process can be modeled as a recursive task graph
2. Processing does not have to be exclusively top-down or bottom-

up
3. Sorting points by Morton indices enables fast identification of

independent points

The next three sections explain these observations and their im-
portance in detail.

3.1. Modeling the indexing process as a recursive task graph

Task-parallel programming is a common method for achieving
processing speedup by using concurrency, and there are powerful
frameworks that handle the scheduling of task graphs onto paral-
lel systems [HLLL20]. By modeling the indexing process as a task
graph, we can distribute the work over a larger number of threads.
The actual amount of achievable parallelism depends on the struc-
ture of the task graph, in particular the maximum number of in-
dependent tasks at any point during processing. Our system aims
for high degrees of data parallelism, the way we process the points
plays an important role in enabling this goal.

The two main sets of data are the points and the nodes of the
acceleration structure. This naturally results in two different ways
of indexing the point cloud: Either iterate over all points, checking
each point against all nodes until a matching node is found (figure 1
(a)), or iterate over all nodes, selecting all matching points for the
current node from the set of all points (figure 1 (b)). Since each
node can contain multiple points, but each point only belongs to a
single node, parallelizing over the points would require extensive
synchronization, as two points in different tasks might fall into the
same octree node. Instead, we chose to create one task per octree
node and check all possible points for their affiliation to this node.
Care has to be taken in the case of point cloud indexing because the
resulting data structure will contain points in both leaf nodes and
interior nodes. The sampling for LOD introduces dependencies be-
tween a node and each of its direct or indirect children, and the
result of sampling methods like the Poisson-disk sampling depends
on the order in which points are processed. As a consequence, sib-
ling nodes in the octree can be processed independently, but nodes
in a parent-child relationship have to be processed with the parent
node first and then the child nodes. In addition to that, the full struc-
ture of the task graph for a single batch cannot be known in advance

because each node has to first be processed, sampling all points for
this node, before it is clear how many - if any - points remain to be
sorted into the node’s child nodes.

Putting this structure into a task graph form yields a recursive
task graph illustrated in figure 2. Processing starts at the root node
of the tree, followed by up to eight independent tasks for each of
the root node’s children, which in turn are again followed by up to
eight independent tasks each, and so on until each point is assigned
to a node. In this way, the deeper the processing progresses into the
octree, the more independent tasks are present in the task graph and
thus the higher the degree of achievable parallelism is.

Figure 1: Indexing a point cloud can be achieved by either finding a
matching node for each individual point (a) or finding all matching
points for each individual node (b)

Figure 2: Processing the point cloud starting from the root node
results in a recursive task graph

3.2. A hybrid top-down, bottom-up processing scheme

The task graph introduced in the previous section models a full
top-down processing scheme. Top-down processing always starts
at the root node and progresses down into the tree. It is used in
both the Entwine and potree-converter systems, where each point
is first checked against the root node, then passed on to the ap-
propriate child node if it does not fit into the root node, and so
on. In contrast, bottom-up processing starts at the leaf nodes of the
tree and moves up towards the root node, reconstructing the upper
nodes from the lower nodes. This is the approach that Goswami et
al. use [GZPG10] to add LOD to their multi-way kd-tree. Both ap-
proaches have their respective advantages and disadvantages: Top-
down processing touches each node only once, whereas bottom-up
processing may access a single node multiple times, resulting in

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

155

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

more I/O load. In contrast, every point in top-down processing has
to be checked against the root node, with a very high probability
that the point will not fit, resulting in a high number of checks that
cannot easily be parallelized. Bottom-up processing immediately
starts at the leaf nodes of the tree, allowing for trivial paralleliza-
tion over all leaf nodes.

Our system uses a hybrid approach where we start at some level
lpar in the octree where the number of non-empty nodes - nodes
whose bounding boxes contain some of the points of the current
batch - is at least as big as the desired level of parallelism. This way
we guarantee that we immediately saturate all threads with index-
ing tasks. Since every node will - on average - have more than one
non-empty child node, the number of available tasks for scheduling
will remain constantly higher than the number of available threads.
As the workload of each of these tasks may vary drastically, having
a large number of tasks to schedule helps counteracting these vari-
ations. This hybrid processing scheme skips all octree levels above
lpar, we reconstruct these nodes from the nodes at level lpar in a
final postprocessing step after all batches have been processed.

3.3. Quickly identifying independent points using Morton
indices

The remaining problem is how we can quickly identify how many
non-empty nodes there are at a given level in the octree, and how
we can gather all points that are contained within the bounding box
of a specific node. This can be achieved efficiently by sorting all
points in a batch by their three-dimensional Morton index. Once
sorted in this way, all points that belong to any specific node in the
octree are stored sequentially in memory. Since at each level, no
point belongs to more than one node, this yields a series of dis-
junct memory regions that can be processed independently. The
split positions that indicate where the range for one node ends and
the range for the next node begins can be identified in logarithmic
time using a binary search. Sorting primitives by Morton index in
this way enabled Lauterbach et al. to create a massively parallel
algorithm for fast bounding-volume-hierarchy (BVH) construction
on GPUs [LGS∗09], which was later extended to octrees by Kar-
ras [Kar12], proving the effectiveness of this approach.

Figure 3 illustrates the indexing process visually, using full top-
down processing for brevity. The resulting task graph is illustrated
in figure 4 and contains the following steps:

1. Morton-Index calculation and sorting, trivially parallelized using
the fork-join pattern

2. Merging the sorted ranges of step 1 into one range for each node
at level lpar

3. Processing each non-empty node at level lpar

3.1 Processing a single node, which is comprised of the following
steps:

(a) Loading points from disk that were selected for this node
in previous batches

(b) Merging new points in this batch with previous points
(c) Applying the sampling function to each point to select all

points that belong to the current node
(d) Storing selected points on disk

Figure 3: Overview of the process of sampling points for each node
(illustrated in 2D and with full top-down processing for brevity). On
the left, example points and the resulting Z-order curve are shown.
On the right, a step-by-step overview illustrates how points are
sampled at each node, with selected points in green and remain-
ing points in red.

Figure 4: The task graph for the indexing process in our system.
The recursive nature of processing can be seen with task 3.1, which
processes a single node and calls itself recursively. Labeled tasks
are explained at the end of section 3.3.

(e) Splitting remaining points into up to eight disjunct ranges
containing all points that fall into each of the child nodes’
bounding boxes

(f) Processing each of the child nodes as a new task, starting
again from step 3.1

Step (d) writes the points for each node into a separate file, which
matches the expected file structure that Potree uses, while at the
same time being fully compatible with the 3D Tiles file format.
This fulfills our goal of file format compatibility.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

156

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

4. Implementation

In this section, we go over some implementation details that were
important in achieving the performance results that our system ex-
hibits. Our implementation is loosely based on the source code
of the potree-converter tool in version 1.7. The source code for
our implementation is available at https://github.com/
igd-geo/schwarzwald.

4.1. Computing Morton indices for points in R3

We briefly state a formal definition for a Morton index in R3 be-
fore illustrating how it is calculated in our implementation. Mor-
ton indices were first proposed by Guy M. Morton [Mor66], and
while they are widely used, we feel it is important to clearly state
their definition in relation to point cloud data in order to understand
some of their inherent challenges in this context.

Given a bounding box B ⊂ R3, subdivide it into a regular grid
of k3 cells. Let ci = (xi,yi,zi)

T be the index of cell i, with x,y,z ∈
[0;k− 1]. The Morton index mi for cell ci is an integer number
obtained by interleaving the bits of xi, yi and zi. In R3, there are
six possible orders for interleaving the bits from most significant
to least significant bit (XY Z, XZY , Y XZ, Y ZX , ZXY , and ZY X), in
our implementation we use the order XY Z. Figure 5 illustrates the
bit-interleaving process.

Figure 5: A 3D Morton index is calculated from X (red), Y (green)
and Z (blue) coordinates through interleaving of the bit represen-
tations of the coordinates.

In order to compute a Morton index for a point p ∈R3 in a point
cloud, we have to subdivide the bounding box of the point cloud
into a regular grid and then find the grid cell that contains p. Since
our algorithm generates octrees, we first calculate the cubic bound-
ing box of the point cloud and use it as a reference for Morton
index calculation. We then have to choose an appropriate value for
the subdivision factor k, which is a tradeoff between precision and
the number of bits required to store the Morton index. In our im-
plementation, we chose k = 21, requiring 3k = 63 bits per Morton
index, which fits into a single 64-bit integer value. The subdivi-
sion factor k determines the maximum depth of the octree in our
implementation - 21 levels in this case - and thus also determines
the minimum side length of any node in the octree, which equals
2−k = 1

2097152 times the side length of the cubic bounding box. For
a dataset with a bounding box side length of 20km, the smallest
node can have a side length of about 1cm. While this suffices for
the datasets that we encountered during our tests (the most dense
dataset having an average distance of 5cm between points at 4.5km
side length), this is a limitation in terms of precision that is not
shared by the reference tools Entwine and potree-converter. Ex-
tending our system to use 128-bit Morton indices would increase

the ratio of bounding box side length to minimum node side length
to about 4.4∗1012, yielding millimeter precision for an earth-sized
point cloud. This would come at the expense of increased mem-
ory usage and decreased performance since 128-bit arithmetic is
currently not natively supported on general-purpose processors and
has to be emulated using multiple 64-bit operations.

To find the cell cp for a point p, we first translate p into the lo-
cal reference frame of the cubic bounding box B, whose origin is
the minimum vertex of B. This yields a point pB ∈ [0; lB]3, where
lB equals the side length of B. Multiplying pB by 2k

lB yields a point

pnorm ∈ [0;2k]3. The coordinates for the indices of cp are then com-
puted as xp =min(bpnormxc,2k−1) and correspondingly for yp and
zp. A C++ implementation for the bit interleaving procedure can be
found in appendix A.

4.2. Internal point representation

During each batch, our system reads points from the input files
into an internal point buffer. A point is defined as a tuple p =
(a1,a2, ...,ak) of attributes ai, such as the position in R3, an integer-
valued intensity or a classification number. The interested reader is
referred to the LAS file specification [las] which defines a series
of common point attributes. Most tools that we found store collec-
tions of points in interleaved format, that is for a collection of points
(p1, p2, ..., pn), all attributes for each point are stored continuously
in memory:

(a1(p1),a2(p1), ...,ak(p1),a1(p2),a2(p2), ...,ak(p2),

...,a1(pn),a2(pn), ...,ak(pn))

An alternative representation is to store the data sequentially per
attribute:

(a1(p1),a1(p2), ...,a1(pn),a2(p1),a2(p2), ...,a2(pn),

...,ak(p1),ak(p2), ...,ak(pn))

The first representation is called Array of Structures (AoS),
whereas the second representation is called Structure of Arrays
(SoA), referring to the way that these representations would be im-
plemented in a C program. While AoS memory layouts are often
easier to work with and more extensible, SoA layouts exhibit bet-
ter cache locality because similar attributes are stored together in
memory. For our system, we chose the SoA memory layout for the
internal point buffer. The reasoning behind this decision is that dur-
ing the indexing process, many of the computationally expensive
steps (Morton index calculation, sampling) only require the posi-
tions of points and no other attributes. Storing all positions in a
contiguous memory region exhibits good cache locality, thus in-
creasing performance.

4.3. Parallel file reading

Using the task graph introduced in section 3, we are able to saturate
a large number of threads with indexing tasks, reaching indexing
speeds of up to 20 million points per second. To sustain this high
point throughput, our system has to be able to read points from the

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

157

https://github.com/igd-geo/schwarzwald
https://github.com/igd-geo/schwarzwald

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

source files into the internal point buffer with a similar through-
put. Depending on the file type and the target system, points can be
read with throughputs ranging from less than one million points per
second to almost 20 million points per second on a single thread.
In particular, we found that reading points from compressed LAS
files (LAZ) can be up to an order of magnitude slower than reading
from uncompressed LAS files due to the computational overhead
of the LAZ decompression algorithm. We use a second task graph
that consist of several read tasks that concurrently fill the internal
point buffer with points read from disk. This task graph is executed
once per batch in parallel to the indexing task graph. To ensure
that these two task graphs do not stall each other we limit the fork
factors of both task graphs so that their sum does not exceed the to-
tal number of threads. Choosing the actual fork factors for reading
and indexing is either done through a fixed allocation of available
threads at program startup, or using an adaptive strategy that cal-
culates reading and indexing throughput factors for each batch and
adjusts the fork factors accordingly. Similar to Entwine, parallel
file reading is implemented with file-level granularity. The maxi-
mum fork factor for the reading task graph is thus limited by the
number of files. This can have detrimental effects on the runtime
performance, which is discussed in section 5.

4.4. Supporting lossy file formats

During indexing, we write the selected points at each node imme-
diately to disk in the desired output file format (Potree-format or
3D Tiles). These files serve as a way for caching data during pro-
cessing, while at the same time being the final output data once
processing is finished. Using the same file format for caching and
output data is efficient as no postprocessing step is required to con-
vert intermediate results into the final data format. Depending on
the output file format, some additional work is required to make
our system work correctly. If during a batch a node is being pro-
cessed for which data exists on disk, our system loads these points
from disk and calculates the Morton indices for these points again.
When using lossless file formats, such as the PNTS file format of
3D Tiles, the Morton indices are recomputed exactly. Since we use
a stable partitioning function during sampling, all selected points
for each node are still sorted by Morton index when being stored
to disk, and thus remain sorted after retrieval. For lossy file formats
like LAS, which quantizes floating point values as 32-bit integers,
there might be rounding errors, resulting in slight differences be-
tween the recalculated and original Morton indices. This can break
the sorting of the points. The only way to fix this is by sorting the
points again after reading from disk. As a consequence, the index-
ing process is slightly slower when using the LAS file format as
compared to the 3D Tiles format.

5. Evaluation

In this section, we compare the results of our system to those of
the potree-converter and Entwine tools. For this, we conducted two
experiments:

1. Tiling performance: Here, we analyze the runtime performance,
quality of the resulting octree, as well as visual quality based on
four publicly available datasets ranging from 854 million points
to 52.5 billion points

2. Scalability: Here, we analyze the scalability of our system in re-
lation to the number of used threads and compare it to the scala-
bility of Entwine

The following datasets were used for testing:

• Wellington: The Wellington, New Zealand 2013 open dataset
[wel] consisting of approximately 52.5 billion points stored in
9405 LAZ files with a total size of 248 GiB
• DCPP: The PG&E Diablo Canyon Power Plant open dataset

[ca1] consisting of approximately 17.7 billion points stored in
2337 LAZ files with a total size of 85 GiB
• Utah: The High Resolution Topography of House Range Fault,

Utah open dataset [uta] consisting of approximately 2 billion
points stored in 16 LAZ files with a total size of 15 GiB
• DoC: The District of Columbia open dataset [dis] consisting of

854 million points stored in 320 uncompressed LAS files with a
total size of 24 GiB

For the Tiling performance experiment, we used a virtual ma-
chine in an OpenStack cloud with 8 virtual CPUs, 16 GB RAM,
and a 3 TB volume residing on an HDD. For the Scalability ex-
periment, we used a virtual machine in Amazon AWS, using the
m5a.16xlarge flavor, which has 64 virtual CPUs, 256 GB RAM
and block storage of type General Purpose SSD.

In order to guarantee a similar workload for all tested tools, we
ran our tool and potree-converter with -d 111 and Entwine with
--span 64 as the spacing parameters. The parameter -d 111
for our tool and potree-converter determines the maximum num-
ber of points on the diagonal of the root bounding box and is a
close approximation to --span 64, the latter dictating the max-
imum number of points on a single axis. Additionally, we ran our
tool twice, once with Poisson-disk sampling to compare to potree-
converter, and once with grid-center sampling to compare to En-
twine. All tools generated their data as compressed LAS files in the
Potree structure.

We used Entwine version 2.1 and potree-converter version 1.7
for all tests and ran all tools using Docker on Ubuntu 18.04. As
mentioned in section 2, potree-converter version 2.0 has been re-
leased at the time of writing this paper. Due to its novelty, at the
time of writing there was no support for running inside a Docker
container on a Linux environment, which prevented us from ob-
taining comparable performance data. Preliminary results obtained
on a Windows-based desktop machine show promise, with potree-
converter version 2.0 being around 30% faster than our tool, and in-
dicate that the performance of potree-converter version 2.0 should
be thoroughly analyzed and compared to our system once it is pos-
sible to do so in a common environment. Disregarding the tech-
nical hurdles, potree-converter version 2.0 uses a different, non-
backwards-compatible file format and focuses heavily on SSD-
based systems, which differs from the goals that we set out for
our system in section 1. The implications of this are discussed in
section 6.

5.1. Tiling performance

Table 1 shows the runtimes of the tested tools with the four datasets.
Our tool consistently outperforms both potree-converter and En-
twine, achieving a 4.9x to 9x speedup over potree-converter and a

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

158

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

2.3x to 3x speedup over Entwine. The slow performance of potree-
converter compared to both Entwine and our system is mostly due
to the fact that potree-converter always uses only two threads. On
the largest dataset with 52.5 billion points, Entwine aborted early
without an error message, likely due to insufficient memory. Com-
pared to Entwine and potree-converter, our system does not keep
any state in memory between multiple batches, so as long as each
batch fits into memory, our system will be able to compute point
clouds of arbitrary size. In particular, it is thus very unlikely that
our system will run out of memory after prolonged processing.

In addition to the runtimes, we also analyzed the size and node
counts of the resulting octrees, which can be seen in table 2 and
table 3. Here, our system creates significantly more nodes than
both potree-converter and Entwine, with Entwine producing oc-
trees with the least nodes. This is because Entwine combines multi-
ple related nodes if they all contain only a few points. Our system is
very strict and fully samples all nodes but the leaf nodes, resulting
in more internal nodes with very few points. The consequence of
this is also increased memory usage for compressed files, as com-
pression is less effective for files with only a few points. In terms
of data sizes, it is also worth noting that potree-converter version
1.7 does not support the full range of attributes defined by the LAS
standard, thus discarding some data.

Lastly, we performed a visual comparison of the resulting in-
dexed point clouds, which can be seen in table 4. The results of
our tool are very similar to those of Entwine, with the Entwine data
being slightly more dense. Both our tool and potree-converter ex-
hibit artifacts on the edges between nodes, which are a result of the
Poisson-disk sampling implementation which does not guarantee a
minimum point distance between adjacent nodes. The artifacts are
more prominent for our tool, likely due to the sorting of the points
which results in more regular sampling patterns.

5.2. Scalability

Figure 6 shows the results of the scalability experiment, illustrat-
ing how runtime performance scales in relation to the number of
threads used. We compared the runtime performance of Entwine
with that of our system for up to 64 threads. Since potree-converter
uses a fixed number of two threads, we excluded it from this ex-
periment. We chose the two datasets DoC and Utah because they
are sufficiently different to illustrate the effects of file format and
number of files on the runtime performance. For processing perfor-
mance and scalability, the DoC dataset is more favorable, as it con-
tains a large number of small, uncompressed files. Uncompressed
files are significantly faster to read, and the large number of files
enables reading many files in parallel. In contrast, the Utah dataset
consists of a small number (16) of compressed files, with extensive
variation in the file size (from 57 MiB to 2.8 GiB).

Both Entwine and our system benefit from using more threads,
but to different degrees. For the DoC dataset, doubling the number
of threads reduces the runtime of our system by a factor of about
2 up until 16 threads are used. The largest gain can be seen be-
tween two and four threads, where the runtime drops by a factor of
2.73. This is due to the fact that with only two threads, one thread
is loading points from disk while one thread is indexing and it is

very likely that one of these threads will perform its work faster
than the other, resulting in one thread being idle for a significant
portion of the runtime. The larger the number of threads, the less
significant this effect will be. With the highest number of threads
(64), synchronization effects start to become apparent, as the run-
time with 32 threads is about equal to that with 64 threads. For
the Utah dataset, our system scales less well but still better than
Entwine, which is mostly due to the fact that the structure of the
dataset puts a natural limit on the maximum number of parallel
reading threads. For the DoC dataset with up to 16 threads, En-
twine also scales with a factor of about 2, the exception being the
jump from two to four threads, where the runtime is equal. The rea-
son for this is that Entwine never uses less than four threads, even
when called with --threads 2. For the Utah dataset, Entwine
also scales worse than for the DoC dataset, which we again attribute
to the less favorable file structure of this dataset.

6. Discussion

Based on the performance results, our approach for increasing data
parallelism was warranted. While our system does benefit from run-
ning with an SSD - as it is very I/O heavy - it outperforms the ref-
erence systems Entwine and potree-converter significantly while
running with an HDD. Compared to Entwine, our system is also
able to write output files directly into 3D Tiles format without any
intermediate steps. Entwine does support 3D Tiles, but only as the
result of a separate processing tool that has to be run after indexing.
We do not see any technical limitations why a point cloud indexing
tool should not be able to directly output indexed data into multiple
common formats. Concerning input file formats, our system cur-
rently only supports LAS/LAZ files but is easily extensible to other
file formats. The only important limitation in terms of performance
is the availability of bounding box information in the file format,
for example in the file header like in the LAS file format. Any file
format that does not provide this information will require an initial
scan over the whole point cloud to compute the full bounding box,
which may introduce a significant performance penalty.

While the resulting acceleration structures that our system pro-
duces are visually very similar to those of Entwine and potree-
converter, it falls short to these systems in terms of node count and
file size. The very high file count that point cloud indexing systems
produce is a general problem that we will have to address in future
work. Indeed, version 2.0 of potree-converter has the reduction of
file counts as one of its main goals [SOW20]. At the same time,
standardized file formats such as 3D Tiles are inherently hierarchi-
cal and often realized through large file hierarchies. The multi-file
approach in particular makes requesting data from web applications
much easier as less logic is required in both the client and server.
We see significant potential for further research in this area.

In terms of scalability, our system meets expectations for up to
32 threads. At higher thread counts, the synchronization points in
the fork-join parallelization model that we use prevent further scal-
ability. This is a critical hurdle that has to be overcome before our
system will be usable in a large distributed environment. Running
in such an environment seems highly desirable, as it gets exceed-
ingly challenging to handle very large datasets with millions of files
on a single machine. Indeed, while indexing the largest dataset with

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

159

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

potree-converter Entwine Ours (Poisson-disk sampling) Ours (grid-center sampling)
Wellington 70h 39m N/A 8h 26m 7h 27m

DCPP 21h 16m 9h 29m 4h 21m 4h 8m
Utah 1h 47m 52m 17s 17m 26s 17m 23s
DoC 45m 43s 13m 35s 6m 25s 5m 26s

Table 1: Runtime for indexing each of the test datasets, compared between potree-converter, Entwine and our system

potree-converter Entwine Ours (minimum distance) Ours (grid center)
Wellington 314 GiB N/A 317 GiB 322 GiB

DCPP 100 GiB 123 GiB 226 GiB 227 GiB
Utah 15 GiB 16 GiB 11 GiB 11 GiB
DoC 4.1 GiB 4.5 GiB 7.6 GiB 7.8 GiB

Table 2: Data sizes of the resulting datasets after indexing, compared between potree-converter, Entwine and our system

potree-converter Entwine Ours (minimum distance) Ours (grid center)
Wellington 10.85M N/A 13.28M 13.66M

DCPP 3.1M 1.78M 7.65M 7.58M
Utah 630k 257k 485k 560k
DoC 144k 87k 186k 200k

Table 3: Resulting number of octree nodes, compared between potree-converter, Entwine and our implementation

2 4 8 16 32 64

102

103

104

Threads

R
un

tim
e

[s
]

Runtimes in relation to thread count (DoC dataset)

Entwine Ours

2 4 8 16 32 64

103

104

Threads

R
un

tim
e

[s
]

Runtimes in relation to thread count (Utah dataset)

Entwine Ours

Figure 6: Runtime performance in relation to number of threads used for Entwine and our system. Tested on the DoC dataset (left) and the
Utah dataset (right)

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

160

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

O
ur

s
(m

in
di

st
an

ce
)

Po
tr

ee
O

ur
s

(g
ri

d
ce

nt
er

)
E

nt
w

in
e

Table 4: Visual comparison of the resulting point cloud octrees for the DoC (left), Utah (middle) and DCPP (right) datasets

52.5 billion points in our experiments, we started to see problems
with hash collisions of file names due to a faulty implementation in
the ext4 file system.

7. Conclusion

We introduced a system for the creation of visualization-optimized
acceleration structures for point cloud data. Our system achieves
significantly better performance than other widely used systems,
both on HDD and SSD systems, while at the same time produces
compatible output data for both the Potree system and the standard-
ized 3D Tiles file format. To achieve this, we modeled the point

cloud indexing process as a recursive task graph, which gets sched-
uled to a high number of concurrent threads. Points are sorted by
3D Morton indices to quickly distribute points onto multiple con-
current tasks, while at the same time retaining good data locality.
We demonstrated the efficiency of our system in two experiments
and compared the performance, data quality and visual quality to
the two indexing tools Entwine and potree-converter.

For future work, we aim to adapt our system for usage in a large-
scale distributed environment, to efficiently process even larger
datasets. We also would like to add the same node-collapsing ca-
pabilities that Entwine exhibits to our tool to reduce the total node
counts.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

161

Pascal Bormann & Michel Krämer / A system for fast and scalable point cloud indexing using task parallelism

References

[ABL16] ALIS C., BOEHM J., LIU K.: Parallel processing of big point
clouds using Z-Order-based partitioning. In International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences-
ISPRS Archives (2016), vol. 41, International Society of Photogrammetry
and Remote Sensing (ISPRS), pp. 71–77. 2

[And] Bit Twiddling Hacks. https://graphics.stanford.
edu/~seander/bithacks.html#InterleaveBMN. Accessed:
2020-08-27. 10

[BGM∗12] BALSA RODRIGUEZ M., GOBBETTI E., MARTON F., PIN-
TUS R., PINTORE G., TINTI A.: Interactive exploration of gigan-
tic point clouds on mobile devices. Tech. rep., 2012. URL: http:
//www.crs4.it/vic/. 2

[Bri07] BRIDSON R.: Fast Poisson disk sampling in arbitrary dimensions.
SIGGRAPH sketches 10 (2007), 1278780–1278807. 2

[ca1] PG&E Diablo Canyon Power Plant (DCPP): San Simeon, CA
Central Coast. http://opentopo.sdsc.edu/lidarDataset?
opentopoID=OTLAS.032013.26910.2. Accessed: 2020-08-27.
6

[ces] Specification for streaming massive heterogeneous 3D geospatial
datasets. https://github.com/AnalyticalGraphicsInc/
3d-tiles. Accessed: 2020-08-27. 2

[dis] District of Columbia - Classified Point Cloud LiDAR. https://
registry.opendata.aws/dc-lidar/. Accessed: 2020-08-27.
6

[DMS∗18] DISCHER S., MASOPUST L., SCHULZ S., RICHTER R.,
DÖLLNER J.: A point-based and image-based multi-pass rendering tech-
nique for visualizing massive 3D point clouds in VR environments. Jour-
nal of WSCG 26, 2 (2018), 76–84. doi:10.24132/JWSCG.2018.
26.2.2. 2

[EBN13] ELSEBERG J., BORRMANN D., NÜCHTER A.: One billion
points in the cloud - An octree for efficient processing of 3D laser scans.
ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013), 76–
88. doi:10.1016/j.isprsjprs.2012.10.004. 2

[ent] Entwine. https://entwine.io/. Accessed: 2020-08-27. 2

[GZPG10] GOSWAMI P., ZHANG Y., PAJAROLA R., GOBBETTI E.:
High quality interactive rendering of massive point models using multi-
way kd-trees. In 18th Pacific Conference on Computer Graphics and
Applications (2010), IEEE, pp. 93–100. 2, 3

[HLLL20] HUANG T.-W., LIN D.-L., LIN Y., LIN C.-X.: Cpp-Taskflow
v2: A General-purpose Parallel and Heterogeneous Task Programming
System at Scale. URL: http://arxiv.org/abs/2004.10908,
arXiv:2004.10908. 3

[Kar12] KARRAS T.: Maximizing parallelism in the construction of bvhs,
octrees, and k-d trees. High-Performance Graphics 2012, HPG 2012 -
ACM SIGGRAPH / Eurographics Symposium Proceedings (2012), 33–
37. doi:10.2312/EGGH/HPG12/033-037. 2, 4

[las] LAS SPECIFICATION, VERSION 1.4 - R13. https:
//www.asprs.org/wp-content/uploads/2010/12/LAS_
1_4_r13.pdf. Accessed: 2020-08-27. 5

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH Construction on GPUs. Computer Graph-
ics Forum (2009). doi:10.1111/j.1467-8659.2009.01377.
x. 4

[Mor66] MORTON G. M.: A computer oriented geodetic data base and
a new technique in file sequencing. Tech. rep., International Business
Machines Company New York, 1966. 2, 5

[pota] Potree. http://potree.org/. Accessed: 2020-08-27. 1, 2

[potb] potree/PotreeConverter at 1.7. https://github.com/
potree/PotreeConverter/tree/1.7. Accessed: 2020-08-27.
2

[RDD15] RICHTER R., DISCHER S., DÖLLNER J.: Out-of-core visu-
alization of classified 3d point clouds. In 3D Geoinformation Science.
Springer, 2015, pp. 227–242. 2

[Sch14] SCHEIBLAUER C.: Interactions with Gigantic Point Clouds.
PhD thesis, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Favoritenstrasse 9-11/186, A-1040 Vi-
enna, Austria, 2014. URL: https://www.cg.tuwien.ac.at/
research/publications/2014/scheiblauer-thesis/.
1, 2

[Sch16] SCHÜTZ M.: Potree: Rendering large point clouds in web
browsers. Technische Universität Wien, Wiedeń (2016). 1, 2

[SOW20] SCHÜTZ M., OHRHALLINGER S., WIMMER M.: Fast out-of-
core octree generation for massive point clouds. Computer Graphics Fo-
rum 39, 7 (aug 2020), 1–2. URL: https://www.cg.tuwien.ac.
at/research/publications/2020/SCHUETZ-2020-MPC/.
2, 7

[uta] High Resolution Topography of House Range Fault, Utah. https:
//portal.opentopography.org/datasetMetadata?
otCollectionID=OT.102019.6341.1. Accessed: 2020-08-07.
doi:{https://doi.org/10.5069/G9348HH6}. 6

[wel] Wellington, New Zealand 2013. https://portal.
opentopography.org/datasetMetadata.jsp?
otCollectionID=OT.042017.2193.2. Accessed: 2020-08-07.
doi:{https://doi.org/10.5069/G9CV4FPT}. 6

Appendix A: Bit interleaving for 3D Morton index calculation

The Morton index calculation in our system depends on a function
that interleaves the bits of three 32-bit numbers into a single 64-bit
number. To achieve this, we use the following C++ function that
inserts two zero-bits between every bit of the input number:

u i n t 6 4 _ t e x p a n d _ b i t s _ b y _ 3 (u i n t 6 4 _ t v a l) {
v a l &= 0x1FFFFF ; / / T r u n c a t e t o 21 b i t s
v a l = (v a l | (v a l << 3 2)) &

u i n t 6 4 _ t (0 x00FF00000000FFFF) ;
v a l = (v a l | (v a l << 1 6)) &

u i n t 6 4 _ t (0 x00FF0000FF0000FF) ;
v a l = (v a l | (v a l << 8)) &

u i n t 6 4 _ t (0 xF00F00F00F00F00F) ;
v a l = (v a l | (v a l << 4)) &

u i n t 6 4 _ t (0 x30C30C30C30C30C3) ;
v a l = (v a l | (v a l << 2)) &

u i n t 6 4 _ t (0 x1249249249249249) ;
r e t u r n v a l ;

}

This function is an adaptation of the bit interleaving function
for two 16-bit values by Sean Eron Anderson [And], extended to
three 64-bit values. The final bit interleaving procedure for the or-
der XYZ is then quite simple:

u i n t 6 4 _ t i n t e r l e a v e _ b i t s _ x y z (u i n t 6 4 _ t x ,
u i n t 6 4 _ t y , u i n t 6 4 _ t z) {
u i n t 6 4 _ t ex = e x p a n d _ b i t s _ b y _ 3 (x) ;
u i n t 6 4 _ t ey = e x p a n d _ b i t s _ b y _ 3 (y) ;
u i n t 6 4 _ t ez = e x p a n d _ b i t s _ b y _ 3 (z) ;
r e t u r n ez | (ey << 1) | (ex << 2) ;

}

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

162

https://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
https://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
http://www.crs4.it/vic/
http://www.crs4.it/vic/
http://opentopo.sdsc.edu/lidarDataset?opentopoID=OTLAS.032013.26910.2
http://opentopo.sdsc.edu/lidarDataset?opentopoID=OTLAS.032013.26910.2
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://registry.opendata.aws/dc-lidar/
https://registry.opendata.aws/dc-lidar/
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.24132/JWSCG.2018.26.2.2
https://doi.org/10.1016/j.isprsjprs.2012.10.004
https://entwine.io/
http://arxiv.org/abs/2004.10908
http://arxiv.org/abs/2004.10908
https://doi.org/10.2312/EGGH/HPG12/033-037
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1111/j.1467-8659.2009.01377.x
http://potree.org/
https://github.com/potree/PotreeConverter/tree/1.7
https://github.com/potree/PotreeConverter/tree/1.7
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.102019.6341.1
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.102019.6341.1
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.102019.6341.1
https://doi.org/{https://doi.org/10.5069/G9348HH6}
https://portal.opentopography.org/datasetMetadata.jsp?otCollectionID=OT.042017.2193.2
https://portal.opentopography.org/datasetMetadata.jsp?otCollectionID=OT.042017.2193.2
https://portal.opentopography.org/datasetMetadata.jsp?otCollectionID=OT.042017.2193.2
https://doi.org/{https://doi.org/10.5069/G9CV4FPT}

