
c© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0

license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

GeoRocket: A scalable and cloud-based data store for

big geospatial files

Michel Krämer

Fraunhofer Institute for Computer Graphics Research IGD, 64283 Darmstadt, Germany

Abstract

We present GeoRocket, a software for the management of very large geospa-
tial datasets in the cloud. GeoRocket employs a novel way to handle arbi-
trarily large datasets by splitting them into chunks that are processed indi-
vidually. The software has a modern reactive architecture and makes use of
existing services including Elasticsearch and storage back ends such as Mon-
goDB or Amazon S3. GeoRocket is schema-agnostic and supports a wide
range of heterogeneous geospatial file formats. It is also format-preserving
and does not alter imported data in any way. The main benefits of GeoRocket
are its performance, scalability, and usability, which make it suitable for a
number of scientific and commercial use cases dealing with very high data
volumes, complex datasets, and high velocity (Big Data). GeoRocket also
provides many opportunities for further research in the area of geospatial
data management.

Keywords: Geospatial Data, Cloud, Big Data, Distributed Computing,
Databases

1. Motivation and significance1

The global data volume is growing continuously. By the year 2025, it2

will have reached 163 zettabytes (or 163 trillion gigabytes) [1]. The main3

drivers of this data growth are mobile phones, autonomous cars, satellites,4

and other devices with built-in location sensors [2]. Data collected by these5

devices can be located in time and place [3] and is called spatiotemporal data6

(or geospatial data, geodata). Kitchin & McArdle recognise geospatial data as7

Big Data characterised by its volume, variety, and velocity [4]. This means8

geospatial data sets are typically large, heterogeneous, and acquired in a9

Email address: michel.kraemer@igd.fraunhofer.de (Michel Krämer)
URL: https://georocket.io (Michel Krämer)

Preprint submitted to SoftwareX January 24, 2020

http://creativecommons.org/licenses/by-nc-nd/4.0/


short amount of time. Earth observation satellites, airborne laser scanners,10

and terrestrial mobile mapping systems, for example, record hundreds of11

thousands of samples per second [5] and produce a few GiB of data up to12

several TiB in a couple of hours [6]. With the growing data volume, users13

face new challenges as their current computer systems lack storage space and14

computational power. At the same time, they require new software solutions15

capable of handling such data.16

In our previous work, we investigated the possibilities of using the cloud17

and microservice architectures to process large amounts of heterogeneous18

geospatial data [7, 8]. We focused on use cases from various domains such as19

land management, urban planning, and marine applications [9, 10] where we20

could show that geospatial data can be of great value given there is sufficient21

computational power, enough storage resources, and suitable software.22

To complement this, we now explore new ways to store, index, and query23

big geospatial data in a scalable, efficient, and inexpensive manner. We24

developed a novel software solution called GeoRocket enabling users to store25

large amounts of geospatial vector data and to access, analyse, and share26

it in a distributed environment—in our case the cloud. The key properties27

of GeoRocket are its scalability, the indexing functionalities, as well as the28

modular architecture and lightweight interfaces. At the same time, it is29

schema-agnostic and format-preserving and provides users with a pragmatic30

way to store data.31

With GeoRocket, we pursue a novel path that differentiates it from ex-32

isting software solutions:33

• PostGIS [11] is an extension to PostgreSQL [12] that provides a low-34

level interface for application developers to store and analyse geospa-35

tial vector data in a traditional, relational database. In contrast,36

GeoRocket is a high-level data store that makes use of other storage37

technologies (see Section 2). The geospatial entities in GeoRocket are38

semantic features and not geometries. GeoRocket is not a relational39

database. It also employs its own query language instead of SQL (see40

Section 2.3).41

• GeoServer [13] and Deegree [14] are storage solutions for geospatial data42

that have a long history. They have a monolithic architecture and use43

a traditional client/server approach. GeoRocket has a modern reactive44

and distributed architecture. It has been designed to run in the cloud45

and to harness the possibilities in terms of performance, scalability, and46

cost-effectiveness.47

2



• 3DCityDB [15] is a database that is specifically made to store CityGML48

files describing 3D city models [16]. CityGML is an application schema49

of the Geography Markup Language (GML) [17], which is itself based50

on XML. In contrast to 3DCityDB, GeoRocket supports multiple file51

formats and is schema-agnostic, so that it can handle CityGML, but52

also GML, or even arbitrary XML files. Besides, 3DCityDB has again53

a monolithic architecture.54

• rasdaman [18] is a storage and analytics solution for large geospatial55

raster data. It runs in a distributed environment and has been specifi-56

cally designed for Big Data. The main difference to GeoRocket is the57

type of the data stored. GeoRocket supports vector data and rasdaman58

is made for raster data.59

• Cesium ion [19] is a commercial solution to host massive 3D datasets60

in the cloud and stream them efficiently for 3D web visualisation in the61

browser with the JavaScript framework Cesium [20]. Data uploaded to62

Cesium ion will be processed, optimized, and tiled to improve stream-63

ing and visualisation performance. The original data is not accessible.64

In contrast, GeoRocket allows access to the unmodified data. It also65

supports 2D as well as 3D data (albeit the supported file formats differ).66

It is a more generic solution that can be used in various applications,67

whereas Cesium ion focuses on 3D web visualisation. Both solutions68

complement each other and can be used in tandem.69

The main contribution of this paper is the novel way to handle arbitrarily70

large data sets (see Section 2). We describe GeoRocket’s event-driven archi-71

tecture and our approach to importing and indexing. We also show samples72

of GeoRocket’s query language to demonstrate how GeoRocket can be used.73

Section 3 describes an illustrative example where we used our software in a74

real-world application. GeoRocket provides potential for further research and75

commercial exploitation, which we discuss in Section 4. The paper finishes76

with conclusions in Section 5.77

2. Software description78

Figure 1 shows a generic overview of a GeoRocket deployment. The main79

components are the GeoRocket server, the storage back end, and the index.80

The server is responsible for importing and exporting geospatial files. The81

actual data is kept in the storage back end. GeoRocket supports multiple82

back ends such as Amazon S3 [21], MongoDB [22], distributed file systems,83

or the local file system (typically used for testing purposes). In addition to84

3



Storage
back end

Index
(Elasticsearch)

GeoRocket
Server

GeoRocket
CLI

Other
clients

Figure 1: Overview of GeoRocket server, clients, and back-end services

the storage back end, GeoRocket keeps an inverted index about information85

found inside imported files. With this, users can search a large data set and86

extract the parts that are relevant to their use case. The index is main-87

tained by the Open-Source framework Elasticsearch [23]. The processes of88

importing, indexing, and querying are described in Section 2.1.89

In addition to the server, the storage back end, and the index, there is a90

command-line interface called GeoRocket CLI. It allows users to import and91

export files, as well as to manage tags and properties (see list of definitions92

below). The GeoRocket server also has an HTTP interface that can be used93

by other clients.94

Before going into detail about the architecture of GeoRocket, we define95

a number of commonly used terms.96

Chunk A chunk represents a geospatial object (also called feature) within97

an imported file. For example, in a CityGML file containing a 3D city98

model, a chunk represents a building (specified by a cityObjectMember99

element). Analogously, in a GeoJSON file [24], a chunk is a feature in100

a feature collection. During import, GeoRocket splits geospatial files101

into individual chunks (see Section 2.1) and saves them in its storage102

back end.103

Layer A layer is a user-defined label (or folder, or directory) that can be104

used to structure a large collection of chunks in GeoRocket’s storage105

back end. A chunk is always put into exactly one layer. If the user106

doesn’t define one during import, the chunk will be put into the root107

layer called ‘/’. Layers are structured hierarchically and parent layers108

always include all chunks of their sub-layers.109

4



Property Properties are user-defined key-value pairs that can be attached110

to one or more chunks. Keys are unique.111

Tag A tag is a user-defined label that can be attached freely to one or more112

chunks to structure data. Basically, a tag is a property with no value.113

Metadata A metadata object includes user-defined tags and properties, as114

well as other automatically derived information (e.g. the imported file’s115

spatial reference system).116

Indexed attribute Indexed attributes are key-value pairs that GeoRocket117

detects during import. Unlike properties, they are not user-defined118

but directly extracted from the imported file (e.g. CityGML generic119

attributes or GeoJSON properties).120

Note that chunks, layers, and indexed attributes are immutable. If a121

geospatial feature should be changed—i.e. if its attributes or geometry should122

be modified or if it should be moved from one layer to another—the feature123

has to be deleted and a modified one has to be imported again. User-defined124

metadata such as properties and tags, however, can be changed later.125

This is also one of the reasons why we developed a new query language126

instead of using SQL. Joins and updates would be too complex or impossible127

to implement, in particular since GeoRocket is no relational database as128

described above.129

2.1. Software Architecture130

GeoRocket has been implemented with Vert.x, an Open-Source toolkit for131

building reactive applications [25]. Its architecture consists of so-called ver-132

ticles, which are independent components that communicate with each other133

by sending messages through an event bus. The software design adheres to134

the reactive manifesto [26]. GeoRocket is responsive, resilient, elastic, and135

message-driven. That means it is able to respond in a timely manner even136

under high load, and it provides good scalability in terms of data volume and137

number of users/parallel requests. At the same time it is fault-tolerant and138

can quickly recover from failures. Responsiveness, scalability, and elasticity139

are the result of both the event-driven architecture design based on Vert.x140

and the novel approach to importing and indexing. Fault-tolerance was im-141

plemented with patterns such as isolation, asynchronous timeouts, fail-fast,142

and retries. We refer to Nygard for more information on this topic [27].143

Note that these properties allow GeoRocket to be deployed to the cloud144

and to make use of the benefits offered by it. Individual verticles (or multiple145

instances of GeoRocket) can be deployed to distributed virtual machines (or146

5



File

Splitter

Storage
back end

Indexer(s)

Index

ChunkChunk Chunk...
Metadata

...

Chunk

Importing

Indexing

Figure 2: Importing and indexing a geospatial file: The file is split into chunks, which are
in turn sent to the storage back end. After that, the indexing process runs asynchronously.

even containers) in the cloud to achieve high performance, reliability, and147

scalability. The event-driven architecture with loosely coupled verticles (or148

instances) allows GeoRocket to scale elastically on demand, which can help149

optimise resource usage and ultimately reduce operating costs.150

Figure 2 depicts the process of importing and indexing a geospatial file151

and how data flows between verticles. In order to be able to process arbitrary152

data volumes, GeoRocket uses a novel streaming approach that applies the153

divide-and-conquer paradigm. At the beginning, the geospatial file is divided154

into individual chunks by the Splitter verticle. The Splitter also attaches155

user-defined metadata objects to each chunk. The chunks are saved in the156

configured storage back end. When all chunks have been written to the back157

end, the importing process is finished.158

6



Storage
back end

Merger

File

Chunk Chunk

Indexer(s)

Index ...

Query

IDs

Figure 3: Exporting a file from GeoRocket: the merger retrieves chunk IDs from the
indexer and merges matching chunks from the storage back end.

As soon as the first chunk has been written, the indexing process is started159

asynchronously. The Indexer verticle reads every imported chunk from the160

storage back end and looks for known patterns such as attributes, geometries,161

or bounding boxes. For this, it uses lightweight stream-based parsing and162

regular expressions. This approach is faster and more scalable than loading163

the chunk completely into memory and interpreting it semantically. It also164

helps GeoRocket interpret geospatial data in a schema-agnostic manner. Af-165

ter parsing, the Indexer saves the extracted information into the index. Note166

that there can be more than one Indexer, each of them responsible for a cer-167

tain kind of pattern. This allows GeoRocket to be extended with pluggable168

Indexers and to support indexing of heterogeneous data sets.169

The process of querying and exporting files from GeoRocket is depicted170

in Figure 3. The main component in this diagram is the Merger verticle.171

It sends a query (see Section 2.3) to the Indexers, which in turn search172

the index for chunk IDs matching the query’s criteria. The chunk IDs are173

then sent back to the Merger, which in turn loads matching chunks from the174

storage back end. These chunks are joined to a valid output file that is finally175

rendered to the client.176

2.2. Software Functionalities177

From the software description above, we can derive the following key178

functionalities of our software:179

7



• GeoRocket has been designed for the cloud. It has a distributed ar-180

chitecture consisting of independent components (verticles) that can181

be deployed redundantly to achieve scalability, performance, and fault-182

tolerance. This is in contrast to existing alternative software products183

that usually have a monolithic architecture.184

• It is backed by the Open-Source framework Elasticsearch that allows185

indexing and querying of very large data sets in flexible ways and with186

high performance. Elasticsearch is itself designed to run in a distributed187

environment and fits well to the architecture of GeoRocket.188

• GeoRocket is schema-agnostic, which means it does not require specific189

data schemas to work properly. Instead, it tries to identify common190

patterns in large heterogeneous data sets and uses the extracted infor-191

mation for indexing.192

• Since GeoRocket’s data store is immutable, the software is format-193

preserving. This means, every imported file can later, during export, be194

reconstructed as it was (apart from possible minor whitespace changes195

between chunks).196

2.3. Sample queries197

In this section, we demonstrate how the query language of GeoRocket198

can be used to retrieve data. The structure of the language is lightweight.199

It consists of terms, logical operators, and comparison operators. Terms can200

be simple strings, dates, or bounding boxes (spatial areas defined by four201

numbers minimum X, minimum Y, maximum X, and maximum Y). You202

can also use the logical operators AND, OR, and NOT. The following example203

retrieves all chunks located inside the given bounding box and containing the204

string Berlin (e.g. as a value in one of the indexed attributes or properties)205

or that are labelled with the tag Berlin:206

AND (13.378 ,52.515 ,13.380 ,52.517 Berlin)207

You can also use comparison operators to constrain a term to a certain208

indexed attribute or property. The following complex example combines209

the logical operator AND with the comparison operators EQ (equals) and GTE210

(greater than or equal to) to search for chunks that (a) lie inside a given211

bounding box, (b) whose indexed attribute or property name equals Berlin,212

and (c) whose indexed attribute or property importedDate is greater than or213

equal to 2018-02-13 (i.e. chunks that have been imported on or after this214

date):215

8



AND (13.378 ,52.515 ,13.380 ,52.517 EQ(name Berlin)216

GTE(importedDate 2018 -02 -13))217

Note that, in this example, name and importedDate are either user-defined218

(if they are properties) or their existence depends on the imported data219

(in case they are indexed attributes). They are not created by default by220

GeoRocket.221

A more detailed description of GeoRocket’s query language can be found222

in the user documentation [28].223

3. Illustrative Example224

In this section, we describe a real-world use case that demonstrates how225

GeoRocket can be used to store a very large geospatial dataset in a public226

cloud and to keep it up to date. The use case involves a data set of 3D build-227

ing models provided by the German federal state of North Rhine-Westphalia228

(Land NRW). The dataset is in the CityGML format (Level of Detail 2) and229

is licensed under the dl-de/by-2-0 (Datenlizenz Deutschland - Namensnen-230

nung - Version 2.0, www.govdata.de/dl-de/by-2-0). It can be downloaded231

from www.opengeodata.nrw.de/produkte/geobasis/3d-gm/3d-gm lod2/.232

In order to demonstrate how this dataset can be kept up to date, we set233

up a GeoRocket cluster using Amazon Web Services (AWS). Table 1 shows234

the EC2 instances we created and their configuration.235

Description Type vCPUs RAM Volume size
1 × GeoRocket 1.3.0 c5.xlarge 4 8 GiB 40 GiB
3 × Elasticsearch 6.4.0 m5.2xlarge 8 32 GiB 100 GiB
1 × MongoDB 4.0.2 m5.large 2 8 GiB 100 GiB

Table 1: Instances of our GeoRocket cluster on AWS

Our cluster consisted of five instances (1 for GeoRocket, 3 for Elastic-236

search, and 1 for MongoDB) running in the AWS region eu-central-1b (Frank-237

furt). The volumes mounted into the instances were SSDs provided by the238

Amazon Elastic Block Store (EBS). All instances were running the Ubuntu239

16.04 LTS AMI (Amazon Machine Image). We deployed and provisioned240

them using the Infrastructure-as-Code (IoC) tool Terraform [29].241

After setting up the cluster, we imported the complete dataset with242

GeoRocket’s command-line application (CLI). The dataset had a total size243

of 224.3 GB split up into 35,022 files. Since the CLI uses GZIP compression244

during upload, only 23.7 GB had to be transferred. We also recorded the245

space usage on our EC2 instances. The MongoDB database was 69.7 GiB246

9

http://www.govdata.de/dl-de/by-2-0
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/3d-gm_lod2/


large. The size of the sharded Elasticsearch index was 36.7 GiB. By de-247

fault, Elasticsearch creates one replica of each index, so the total size of the248

Elasticsearch storage was 73.4 GiB distributed over the three EC2 instances.249

MongoDB and Elasticsearch use Snappy and LZ4 compression respectively,250

which is the reason why the used space was lower than the total size of our251

dataset. Both MongoDB and Elasticsearch contained entries for 10,529,668252

chunks, which means there were this many geospatial objects in the dataset.253

In order to demonstrate how such a large dataset can be managed with254

GeoRocket, we performed a workflow that is realistic and regularly happens255

in this or a similar way in municipalities or federal agencies. The dataset256

contained buildings in level of detail 2 (LoD2), which means they were only257

represented by wall and roof geometries. Suppose the dataset should be up-258

dated and more detailed building models should be added: for the purpose259

of city marketing, the LoD2 models of the popular shopping street ‘Schilder-260

gasse’ in Cologne should be replaced by highly detailed geometries. Further261

suppose that old objects should not be removed from the dataset but kept262

for historical reasons.263

First, we used the command-line application to mark the buildings in the264

Schildergasse in Cologne as outdated by adding a property deleted denoting265

the date when the buildings were replaced. Since the dataset contained xAL266

2.0 addresses [30], we were able to use the terms Schildergasse and Köln267

(German for Cologne) in our command.1268

georocket property set -props deleted :2018 -09 -13 \269

AND(Schildergasse Köln)270

We then imported the new buildings:271

georocket import Schildergasse_update.gml272

After this, we were able to download the complete city model of Cologne273

excluding the old models of the Schildergasse with the following query:274

georocket search AND(NOT(LTE(deleted 2018 -09 -13)) Köln)275

This query matches all objects from Cologne but not those that have a276

deleted property whose value is less than or equal to 2018-09-13.277

All operations performed very fast. Setting the property was finished in278

a few milliseconds. The new file was only a few MiB large and importing279

it was a matter of seconds. The latency for downloading the complete city280

model of Cologne was again very low (a few milliseconds).281

1If you run the CLI on a Unix shell such as bash, you need to escape parentheses with
backslashes. The Windows Command Prompt, on the other hand, does not require them.
For the sake of readability, we omitted the backslashes here.

10



If the municipality or federal agency wanted to actually delete old data282

from the dataset on a regular basis for the sake of housekeeping (e.g. at the283

end of every year), they could use the following command:284

georocket delete LT(deleted 2018)285

This command would remove all objects from the dataset that have been286

marked as deleted in 2017 or earlier. GeoRocket is able to automatically287

parse dates in ISO format and compare their values accordingly.288

4. Impact289

As mentioned in Section 1, geospatial data is increasingly becoming larger290

and more complex. Users are faced with new problems related to data volume291

and heterogeneity, as well as the speed with which data is acquired. One of292

the aims of developing GeoRocket was to make it possible to analyse and293

share such data by leveraging the possibilities of the cloud. This has opened294

up a number of new research directions and potential for changing the way295

users and companies work with Big Geo Data.296

Firstly, we are currently working on developing novel visual analysis meth-297

ods for large geospatial data sets. In the research project DataBio funded298

by the European Commission (grant agreement No 732064), we are using299

GeoRocket as a store for data from the agricultural domain. Based on this,300

we are developing a visual tool to interactively explore the data set and to301

perform analyses and aggregations.302

We are also using GeoRocket in the area of Smart City Clouds where303

it enables users to access and share the large amounts of information col-304

lected in a Smart City for the first time for use cases such as urban planning305

or traffic management. In this respect, we have extended GeoRocket with306

means to encrypt data in the cloud while keeping the possibility to search it307

using Searchable Symmetric Encryption (SSE) [31]. We have also explored308

the possibility to share geospatial data in a secure way in a Smart City Cloud309

for applications related to security [32]. Furthermore, we discussed the pos-310

sibility to use GeoRocket in the area of processing of large geospatial data311

for use cases such as land monitoring or urban planning [7, pp. 48–49 and312

163–164].313

Besides the research opportunities, we believe GeoRocket also benefits314

users and companies. As mentioned in Section 1, there are existing prod-315

ucts that can manage geospatial data, but they typically have a monolithic316

software architecture and are supposed to run in a traditional client/server317

setting. GeoRocket, on the other hand, has been designed to run in the318

cloud and to leverage its possibilities, not only in terms of performance and319

11



scalability but also cost-effectiveness. Deploying GeoRocket to the cloud can320

be much less expensive for users and companies than maintaining dedicated321

on-premise hardware. This particularly applies to public administrations or322

small and medium enterprises.323

5. Conclusions324

In this paper, we presented GeoRocket, a scalable and cloud-based data325

store for geospatial files. We compared it to existing products and described326

its architecture and query language. We also presented an illustrative exam-327

ple showing how GeoRocket can be used in a real-world application. Finally,328

we discussed the impact of our software with regards to opportunities for329

scientific research and commercial exploitation.330

There is an ongoing paradigm shift in Computer Sciences towards Cloud331

Computing. This particularly applies to Geoinformatics, which has only332

started to make successful use of the cloud. GeoRocket is one of the first333

applications that is specifically designed to manage geospatial data and to334

run in the cloud. In this paper, we were able to show that our novel ap-335

proach to data handling based on splitting files into chunks and indexing336

them individually has many benefits regarding performance, scalability, and337

usability. Since GeoRocket is schema-agnostic, it supports a wide range338

of geospatial datasets and can be used in multiple applications. It is also339

format-preserving and avoids information loss that typically happens when340

you have to transform data between different models. These properties make341

GeoRocket superior to existing solutions.342

The illustrative example presented in the paper only scratches the surface343

of what is possible with GeoRocket. In Section 4, we already mentioned344

briefly that we are also working on visual analysis methods and secure data345

storage. In the future, we will focus on novel approaches to increase the346

use of the large amounts of data managed by GeoRocket through Big Data347

methods and Visual Analytics. We will also further improve the performance348

of GeoRocket and explore its use for time series and other spatiotemporal349

data.350

References351

[1] D. Reinsel, J. Gantz, J. Rydning, Data age 2025 - the evolution of data352

to life-critical, Tech. rep., An IDC White Paper, Sponsored by Seagate353

(2017).354

12



[2] M. F. Goodchild, Citizens as sensors: the world of volunteered355

geography, GeoJournal 69 (4) (2007) 211–221. doi:10.1007/356

s10708-007-9111-y.357

[3] R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky,358

S. Shekhar, Spatiotemporal data mining in the era of big spatial data:359

Algorithms and applications, in: Proceedings of the 1st ACM SIGSPA-360

TIAL International Workshop on Analytics for Big Geospatial Data,361

ACM, 2012, pp. 1–10. doi:10.1145/2447481.2447482.362

[4] R. Kitchin, G. McArdle, What makes Big Data, Big Data? Exploring363

the ontological characteristics of 26 datasets, Big Data & Society 3 (1)364

(2016) 1–10. doi:10.1177/2053951716631130.365

[5] C. Cahalane, T. McCarthy, C. P. McElhinney, MIMIC: Mobile Mapping366

Point Density Calculator, in: Proceedings of the 3rd International Con-367

ference on Computing for Geospatial Research and Applications, ACM,368

2012, pp. 15:1–15:9. doi:10.1145/2345316.2345335.369

[6] N. Paparoditis, J. P. Papelard, B. Cannelle, A. Devaux, B. Soheilian,370

N. David, E. Houzay, Stereopolis II: A multi-purpose and multi-sensor371

3D mobile mapping system for street visualisation and 3D metrology,372

Revue française de photogrammétrie et de télédétection 200 (1) (2012)373

69–79.374

[7] M. Krämer, A microservice architecture for the processing of large375

geospatial data in the cloud, Ph.D. thesis, Technische Universität Darm-376

stadt (2018). doi:10.13140/RG.2.2.30034.66248.377

[8] M. Krämer, I. Senner, A modular software architecture for processing378

of big geospatial data in the cloud, Computers & Graphics 49 (2015)379

69–81. doi:10.1016/j.cag.2015.02.005.380

[9] J. Böhm, M. Bredif, T. Gierlinger, M. Krämer, R. Lindenbergh, K. Liu,381

F. Michel, B. Sirmacek, The IQmulus Urban Showcase: Automatic Tree382

Classification and Identification in Huge Mobile Mapping Point Clouds,383

ISPRS - International Archives of the Photogrammetry, Remote Sensing384

and Spatial Information Sciences XLI-B3 (2016) 301–307. doi:10.5194/385

isprs-archives-XLI-B3-301-2016.386

[10] M. Belényesi, D. Kristóf, IQmulus public project deliverable D1.2.3 -387

Revised User Requirements, Tech. rep. (2014).388

[11] PostGIS (2019). https://postgis.net/ [accessed 25 October 2019].389

13

http://dx.doi.org/10.1007/s10708-007-9111-y
http://dx.doi.org/10.1007/s10708-007-9111-y
http://dx.doi.org/10.1007/s10708-007-9111-y
http://dx.doi.org/10.1145/2447481.2447482
http://dx.doi.org/10.1177/2053951716631130
http://dx.doi.org/10.1145/2345316.2345335
http://dx.doi.org/10.13140/RG.2.2.30034.66248
http://dx.doi.org/10.1016/j.cag.2015.02.005
http://dx.doi.org/10.5194/isprs-archives-XLI-B3-301-2016
http://dx.doi.org/10.5194/isprs-archives-XLI-B3-301-2016
http://dx.doi.org/10.5194/isprs-archives-XLI-B3-301-2016
https://postgis.net/


[12] PostgreSQL (2019). https://www.postgresql.org/ [accessed 25 Oc-390

tober 2019].391

[13] GeoServer (2019). http://geoserver.org/ [accessed 25 October 2019].392

[14] Deegree (2019). https://www.deegree.org/ [accessed 25 October393

2019].394

[15] 3DCityDB (2019). https://www.3dcitydb.org/ [accessed 25 October395

2019].396

[16] G. Gröger, T. H. Kolbe, C. Nagel, K.-H. Häfele (eds.), OGC City Ge-397

ography Markup Language (CityGML) Encoding Standard 2.0, Tech.398

rep., Open Geospatial Consortium (2012).399

URL http://www.opengeospatial.org/standards/citygml400

[17] C. Portele (ed.), OpenGIS Geography Markup Language (GML) Encod-401

ing Standard 3.2.1, Tech. rep., Open Geospatial Consortium (2007).402

URL http://www.opengeospatial.org/standards/gml403

[18] rasdaman (2019). https://www.rasdaman.com/ [accessed 25 October404

2019].405

[19] Cesium ion (2019). https://cesium.com/cesium-ion/ [accessed 25406

October 2019].407

[20] Cesiumjs (2019). https://cesiumjs.org/ [accessed 25 October 2019].408

[21] Amazon S3 (2019). https://aws.amazon.com/s3/ [accessed 25 Octo-409

ber 2019].410

[22] MongoDB (2019). https://www.mongodb.com/ [accessed 25 October411

2019].412

[23] Elasticsearch (2019). https://www.elastic.co/de/products/413

elasticsearch [accessed 25 October 2019].414

[24] H. Butler., M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub, RFC 7946415

– The GeoJSON Format, Tech. rep., Internet Engineering Task Force416

(IETF) (2016).417

URL https://tools.ietf.org/html/rfc7946418

[25] Vert.x (2019). https://vertx.io/ [accessed 25 October 2019].419

14

https://www.postgresql.org/
http://geoserver.org/
https://www.deegree.org/
https://www.3dcitydb.org/
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
https://www.rasdaman.com/
https://cesium.com/cesium-ion/
https://cesiumjs.org/
https://aws.amazon.com/s3/
https://www.mongodb.com/
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/elasticsearch
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://vertx.io/


[26] J. Bonér, D. Farley, R. Kuhn, M. Thompson. The reactive manifesto v2.0420

(2014). https://www.reactivemanifesto.org/ [accessed 25 October421

2019].422

[27] M. T. Nygard, Release It! Design and Deploy Production-Ready Soft-423

ware, Pragmatic Bookshelf, 2007.424

[28] M. Krämer. GeoRocket user documentation (2018). https:425

//georocket.io/docs/user-documentation/ [accessed 25 October426

2019].427

[29] Terraform (2019). https://www.terraform.io/ [accessed 25 October428

2019].429

[30] Extensible Address Language (xAL) Standard Description Document430

for W3C DTD/Schema – Version 2.0, Tech. rep., Organization for the431

Advancement of Structured Information Standards OASIS (2002).432

URL https://www.oasis-open.org/committees/tc_home.php?wg_433

abbrev=ciq434

[31] B. Hiemenz, M. Krämer, Dynamic searchable symmetric encryption for435

storing geospatial data in the cloud, International Journal of Information436

Security (2018) Accepted, to be published.437

[32] M. Krämer, S. Frese, A. Kuijper, Implementing secure applications in438

smart city clouds using microservices, Future Generation Computer Sys-439

tems (2019) Submitted, under review.440

15

https://www.reactivemanifesto.org/
https://georocket.io/docs/user-documentation/
https://georocket.io/docs/user-documentation/
https://georocket.io/docs/user-documentation/
https://www.terraform.io/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq


Required Metadata441

Current code version442

Nr. Code metadata description Please fill in this column
C1 Current code version Git SHA ace352a
C2 Permanent link to code/repository

used for this code version
https://github.com/georocket/

georocket/tree/v1.3.0

C3 Legal Code License Apache-2.0
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Java, Vert.x, Elasticsearch

C6 Compilation requirements, operat-
ing environments & dependencies

JDK 8

C7 If available Link to developer docu-
mentation/manual

https://georocket.io/docs/

C8 Support email for questions michel.kraemer@igd.

fraunhofer.de

Table 2: Code metadata (mandatory)

Current executable software version443

Nr. (Executable) software meta-
data description

Please fill in this column

S1 Current software version 1.3.0
S2 Permanent link to executables of

this version
https://github.com/georocket/

georocket/releases/tag/v1.3.0

S3 Legal Software License Apache-2.0
S4 Computing platforms/Operating

Systems
Linux, macOS, Windows

S5 Installation requirements & depen-
dencies

Java 8

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

https://georocket.io/docs/

user-documentation/1.3.0

S7 Support email for questions michel.kraemer@igd.

fraunhofer.de

Table 3: Software metadata (optional)

16

https://github.com/georocket/georocket/tree/v1.3.0
https://github.com/georocket/georocket/tree/v1.3.0
https://georocket.io/docs/
mailto:michel.kraemer@igd.fraunhofer.de
mailto:michel.kraemer@igd.fraunhofer.de
https://github.com/georocket/georocket/releases/tag/v1.3.0
https://github.com/georocket/georocket/releases/tag/v1.3.0
https://georocket.io/docs/user-documentation/1.3.0
https://georocket.io/docs/user-documentation/1.3.0
mailto:michel.kraemer@igd.fraunhofer.de
mailto:michel.kraemer@igd.fraunhofer.de

	Motivation and significance
	Software description
	Software Architecture
	Software Functionalities
	Sample queries

	Illustrative Example
	Impact
	Conclusions

