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a b s t r a c t

We present GeoRocket, a software for the management of very large geospatial datasets in the cloud.
GeoRocket employs a novel way to handle arbitrarily large datasets by splitting them into chunks that
are processed individually. The software has a modern reactive architecture and makes use of existing
services including Elasticsearch and storage back ends such as MongoDB or Amazon S3. GeoRocket
is schema-agnostic and supports a wide range of heterogeneous geospatial file formats. It is also
format-preserving and does not alter imported data in any way. The main benefits of GeoRocket
are its performance, scalability, and usability, which make it suitable for a number of scientific and
commercial use cases dealing with very high data volumes, complex datasets, and high velocity (Big
Data). GeoRocket also provides many opportunities for further research in the area of geospatial data
management.
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1. Motivation and significance

The global data volume is growing continuously. By the year
2025, it will have reached 163 zettabytes (or 163 trillion gi-
gabytes) [1]. The main drivers of this data growth are mobile
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phones, autonomous cars, satellites, and other devices with built-
in location sensors [2]. Data collected by these devices can be
located in time and place [3] and is called spatiotemporal data
(or geospatial data, geodata). Kitchin & McArdle recognize geospa-
tial data as Big Data characterized by its volume, variety, and
velocity [4]. This means geospatial datasets are typically large,
heterogeneous, and acquired in a short amount of time. Earth
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observation satellites, airborne laser scanners, and terrestrial mo-
bile mapping systems, for example, record hundreds of thousands
of samples per second [5] and produce a few GiB of data up
to several TiB in a couple of hours [6]. With the growing data
volume, users face new challenges as their current computer
systems lack storage space and computational power. At the same
time, they require new software solutions capable of handling
such data.

In our previous work, we investigated the possibilities of us-
ing the cloud and microservice architectures to process large
amounts of heterogeneous geospatial data [7,8]. We focused on
use cases from various domains such as land management, urban
planning, and marine applications [9,10] where we could show
that geospatial data can be of great value given there is sufficient
computational power, enough storage resources, and suitable
software.

To complement this, we now explore new ways to store,
index, and query big geospatial data in a scalable, efficient, and
inexpensive manner. We developed a novel software solution
called GeoRocket enabling users to store large amounts of geospa-
tial vector data and to access, analyze, and share it in a dis-
tributed environment—in our case the cloud. The key properties
of GeoRocket are its scalability, the indexing functionalities, as
well as the modular architecture and lightweight interfaces. At
the same time, it is schema-agnostic and format-preserving and
provides users with a pragmatic way to store data.

With GeoRocket, we pursue a novel path that differentiates it
from existing software solutions:

• PostGIS [11] is an extension to PostgreSQL [12] that provides
a low-level interface for application developers to store and
analyze geospatial vector data in a traditional, relational
database. In contrast, GeoRocket is a high-level data store
that makes use of other storage technologies (see Section 2).
The geospatial entities in GeoRocket are semantic features
and not geometries. GeoRocket is not a relational database.
It also employs its own query language instead of SQL (see
Section 2.3).

• GeoServer [13] and Deegree [14] are storage solutions for
geospatial data that have a long history. They have a mono-
lithic architecture and use a traditional client/server ap-
proach. GeoRocket has a modern reactive and distributed
architecture. It has been designed to run in the cloud and to
harness the possibilities in terms of performance, scalability,
and cost-effectiveness.

• 3DCityDB [15] is a database that is specifically made to store
CityGML files describing 3D city models [16]. CityGML is
an application schema of the Geography Markup Language
(GML) [17], which is itself based on XML. In contrast to
3DCityDB, GeoRocket supports multiple file formats and is
schema-agnostic, so that it can handle CityGML, but also
GML, or even arbitrary XML files. Besides, 3DCityDB has
again a monolithic architecture.

• rasdaman [18] is a storage and analytics solution for large
geospatial raster data. It runs in a distributed environment
and has been specifically designed for Big Data. The main
difference to GeoRocket is the type of the data stored.
GeoRocket supports vector data and rasdaman is made for
raster data.

• Cesium ion [19] is a commercial solution to host massive 3D
datasets in the cloud and stream them efficiently for 3D web
visualization in the browser with the JavaScript framework
Cesium [20]. Data uploaded to Cesium ion will be processed,
optimized, and tiled to improve streaming and visualization
performance. The original data is not accessible. In contrast,
GeoRocket allows access to the unmodified data. It also

Fig. 1. Overview of GeoRocket server, clients, and back-end services.

supports 2D as well as 3D data (albeit the supported file
formats differ). It is a more generic solution that can be used
in various applications, whereas Cesium ion focuses on 3D
web visualization. Both solutions complement each other
and can be used in tandem.

The main contribution of this paper is the novel way to handle
arbitrarily large datasets (see Section 2). We describe GeoRocket’s
event-driven architecture and our approach to importing and
indexing. We also show samples of GeoRocket’s query language to
demonstrate how GeoRocket can be used. Section 3 describes an
illustrative example where we used our software in a real-world
application. GeoRocket provides potential for further research
and commercial exploitation, which we discuss in Section 4. The
paper finishes with conclusions in Section 5.

2. Software description

Fig. 1 shows a generic overview of a GeoRocket deployment.
The main components are the GeoRocket server, the storage
back end, and the index. The server is responsible for importing
and exporting geospatial files. The actual data is kept in the
storage back end. GeoRocket supports multiple back ends such
as Amazon S3 [21], MongoDB [22], distributed file systems, or
the local file system (typically used for testing purposes). In
addition to the storage back end, GeoRocket keeps an inverted
index about information found inside imported files. With this,
users can search a large dataset and extract the parts that are
relevant to their use case. The index is maintained by the Open-
Source framework Elasticsearch [23]. The processes of importing,
indexing, and querying are described in Section 2.1.

In addition to the server, the storage back end, and the index,
there is a command-line interface called GeoRocket CLI. It allows
users to import and export files, as well as to manage tags and
properties (see list of definitions below). The GeoRocket server
also has an HTTP interface that can be used by other clients.

Before going into detail about the architecture of GeoRocket,
we define a number of commonly used terms.

Chunk A chunk represents a geospatial object (also called fea-
ture) within an imported file. For example, in a CityGML file
containing a 3D city model, a chunk represents a building
(specified by a cityObjectMember element). Analogously, in
a GeoJSON file [24], a chunk is a feature in a feature
collection. During import, GeoRocket splits geospatial files
into individual chunks (see Section 2.1) and saves them in
its storage back end.

Layer A layer is a user-defined label (or folder, or directory) that
can be used to structure a large collection of chunks in
GeoRocket’s storage back end. A chunk is always put into
exactly one layer. If the user does not define one during
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import, the chunk will be put into the root layer called
‘/’. Layers are structured hierarchically and parent layers
always include all chunks of their sub-layers.

Property Properties are user-defined key–value pairs that can be
attached to one or more chunks. Keys are unique.

Tag A tag is a user-defined label that can be attached freely to
one or more chunks to structure data. Basically, a tag is a
property with no value.

Metadata A metadata object includes user-defined tags and
properties, as well as other automatically derived informa-
tion (e.g. the imported file’s spatial reference system).

Indexed attribute Indexed attributes are key–value pairs that
GeoRocket detects during import. Unlike properties, they
are not user-defined but directly extracted from the im-
ported file (e.g. CityGML generic attributes or GeoJSON
properties).

Note that chunks, layers, and indexed attributes are immutable.
If a geospatial feature should be changed—i.e. if its attributes or
geometry should be modified or if it should be moved from one
layer to another—the feature has to be deleted and a modified
one has to be imported again. User-defined metadata such as
properties and tags, however, can be changed later.

This is also one of the reasons why we developed a new
query language instead of using SQL. Joins and updates would
be too complex or impossible to implement, in particular since
GeoRocket is no relational database as described above.

2.1. Software architecture

GeoRocket has been implemented with Vert.x, an Open-Source
toolkit for building reactive applications [25]. Its architecture
consists of so-called verticles, which are independent compo-
nents that communicate with each other by sending messages
through an event bus. The software design adheres to the reactive
manifesto [26]. GeoRocket is responsive, resilient, elastic, and
message-driven. That means it is able to respond in a timely
manner even under high load, and it provides good scalability
in terms of data volume and number of users/parallel requests.
At the same time, it is fault-tolerant and can quickly recover
from failures. Responsiveness, scalability, and elasticity are the
result of both the event-driven architecture design based on
Vert.x and the novel approach to importing and indexing. Fault-
tolerance was implemented with patterns such as isolation, asyn-
chronous timeouts, fail-fast, and retries. We refer to Nygard for
more information on this topic [27].

Note that these properties allow GeoRocket to be deployed to
the cloud and to make use of the benefits offered by it. Individual
verticles (or multiple instances of GeoRocket) can be deployed to
distributed virtual machines (or even containers) in the cloud to
achieve high performance, reliability, and scalability. The event-
driven architecture with loosely coupled verticles (or instances)
allows GeoRocket to scale elastically on demand, which can help
optimize resource usage and ultimately reduce operating costs.

Fig. 2 depicts the process of importing and indexing a geospa-
tial file and how data flows between verticles. In order to be able
to process arbitrary data volumes, GeoRocket uses a novel stream-
ing approach that applies the divide-and-conquer paradigm. At
the beginning, the geospatial file is divided into individual chunks
by the Splitter verticle. The Splitter also attaches user-defined
metadata objects to each chunk. The chunks are saved in the
configured storage back end. When all chunks have been written
to the back end, the importing process is finished.

Fig. 2. Importing and indexing a geospatial file: The file is split into chunks,
which are in turn sent to the storage back end. After that, the indexing process
runs asynchronously.

Fig. 3. Exporting a file from GeoRocket: the merger retrieves chunk IDs from
the indexer and merges matching chunks from the storage back end.

As soon as the first chunk has been written, the indexing pro-
cess is started asynchronously. The Indexer verticle reads every
imported chunk from the storage back end and looks for known
patterns such as attributes, geometries, or bounding boxes. For
this, it uses lightweight stream-based parsing and regular expres-
sions. This approach is faster and more scalable than loading the
chunk completely into memory and interpreting it semantically.
It also helps GeoRocket interpret geospatial data in a schema-
agnostic manner. After parsing, the Indexer saves the extracted
information into the index. Note that there can be more than one
Indexer, each of them responsible for a certain kind of pattern.
This allows GeoRocket to be extended with pluggable Indexers
and to support indexing of heterogeneous datasets.

The process of querying and exporting files from GeoRocket
is depicted in Fig. 3. The main component in this diagram is the
Merger verticle. It sends a query (see Section 2.3) to the Indexers,
which in turn search the index for chunk IDs matching the query’s
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criteria. The chunk IDs are then sent back to the Merger, which
in turn loads matching chunks from the storage back end. These
chunks are joined to a valid output file that is finally rendered to
the client.

2.2. Software functionalities

From the software description above, we can derive the fol-
lowing key functionalities of our software:

• GeoRocket has been designed for the cloud. It has a dis-
tributed architecture consisting of independent components
(verticles) that can be deployed redundantly to achieve scal-
ability, performance, and fault-tolerance. This is in contrast
to existing alternative software products that usually have
a monolithic architecture.

• It is backed by the Open-Source framework Elasticsearch
that allows indexing and querying of very large datasets in
flexible ways and with high performance. Elasticsearch is
itself designed to run in a distributed environment and fits
well to the architecture of GeoRocket.

• GeoRocket is schema-agnostic, which means it does not re-
quire specific data schemas to work properly. Instead, it
tries to identify common patterns in large heterogeneous
datasets and uses the extracted information for indexing.

• Since GeoRocket’s data store is immutable, the software
is format-preserving. This means every imported file can
later, during export, be reconstructed as it was (apart from
possible minor whitespace changes between chunks).

2.3. Sample queries

In this section, we demonstrate how the query language of
GeoRocket can be used to retrieve data. The structure of the
language is lightweight. It consists of terms, logical operators,
and comparison operators. Terms can be simple strings, dates, or
bounding boxes (spatial areas defined by four numbers minimum
X, minimum Y, maximum X, and maximum Y). You can also
use the logical operators AND, OR, and NOT. The following example
retrieves all chunks located inside the given bounding box and
containing the string Berlin (e.g. as a value in one of the indexed
attributes or properties) or that are labeled with the tag Berlin:

AND(13.378,52.515,13.380,52.517 Berlin)

You can also use comparison operators to constrain a term to
a certain indexed attribute or property. The following complex
example combines the logical operator AND with the comparison
operators EQ (equals) and GTE (greater than or equal to) to search
for chunks that (a) lie inside a given bounding box, (b) whose
indexed attribute or property name equals Berlin, and (c) whose
indexed attribute or property importedDate is greater than or
equal to 2018-02-13 (i.e. chunks that have been imported on or
after this date):

AND(13.378,52.515,13.380,52.517 EQ(name Berlin)
GTE(importedDate 2018-02-13))

Note that, in this example, name and importedDate are either
user-defined (if they are properties) or their existence depends
on the imported data (in case they are indexed attributes). They
are not created by default by GeoRocket.

A more detailed description of GeoRocket’s query language can
be found in the user documentation [28].

Table 1
Instances of our GeoRocket cluster on AWS.
Description Type vCPUs RAM Volume size

1 × GeoRocket 1.3.0 c5.xlarge 4 8 GiB 40 GiB
3 × Elasticsearch 6.4.0 m5.2xlarge 8 32 GiB 100 GiB
1 × MongoDB 4.0.2 m5.large 2 8 GiB 100 GiB

3. Illustrative example

In this section, we describe a real-world use case that demon-
strates how GeoRocket can be used to store a very large geospatial
dataset in a public cloud and to keep it up to date. The use
case involves a dataset of 3D building models provided by the
German federal state of North Rhine-Westphalia (Land NRW).
The dataset is in the CityGML format (Level of Detail 2) and
is licensed under the dl-de/by-2-0 (Datenlizenz Deutschland –
Namensnennung – Version 2.0, www.govdata.de/dl-de/by-2-0).
It can be downloaded from www.opengeodata.nrw.de/produkte/
geobasis/3d-gm/3d-gm_lod2/.

In order to demonstrate how this dataset can be kept up to
date, we set up a GeoRocket cluster using Amazon Web Services
(AWS). Table 1 shows the EC2 instances we created and their
configuration.

Our cluster consisted of five instances (1 for GeoRocket, 3 for
Elasticsearch, and 1 for MongoDB) running in the AWS region eu-
central-1b (Frankfurt). The volumes mounted into the instances
were SSDs provided by the Amazon Elastic Block Store (EBS).
All instances were running the Ubuntu 16.04 LTS AMI (Amazon
Machine Image). We deployed and provisioned them using the
Infrastructure-as-Code (IoC) tool Terraform [29].

After setting up the cluster, we imported the complete dataset
with GeoRocket’s command-line application (CLI). The dataset
had a total size of 224.3 GB split up into 35,022 files. Since the
CLI uses GZIP compression during upload, only 23.7 GB had to
be transferred. We also recorded the space usage on our EC2
instances. The MongoDB database was 69.7 GiB large. The size
of the sharded Elasticsearch index was 36.7 GiB. By default,
Elasticsearch creates one replica of each index, so the total size
of the Elasticsearch storage was 73.4 GiB distributed over the
three EC2 instances. MongoDB and Elasticsearch use Snappy and
LZ4 compression respectively, which is the reason why the used
space was lower than the total size of our dataset. Both MongoDB
and Elasticsearch contained entries for 10,529,668 chunks, which
means there were this many geospatial objects in the dataset.

In order to demonstrate how such a large dataset can be man-
aged with GeoRocket, we performed a workflow that is realistic
and regularly happens in this or a similar way in municipalities
or federal agencies. The dataset contained buildings in level of
detail 2 (LoD2), which means they were only represented by wall
and roof geometries. Suppose the dataset should be updated and
more detailed building models should be added: for the purpose
of city marketing, the LoD2 models of the popular shopping
street ‘Schildergasse’ in Cologne should be replaced by highly
detailed geometries. Further suppose that old objects should not
be removed from the dataset but kept for historical reasons.

First, we used the command-line application to mark the
buildings in the Schildergasse in Cologne as outdated by adding
a property deleted denoting the date when the buildings were
replaced. Since the dataset contained xAL 2.0 addresses [30], we
were able to use the terms Schildergasse and Köln (German for
Cologne) in our command.1

1 If you run the CLI on a Unix shell such as bash, you need to escape
parentheses with backslashes. The Windows Command Prompt, on the other
hand, does not require them. For the sake of readability, we omitted the
backslashes here.

http://www.govdata.de/dl-de/by-2-0
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/3d-gm_lod2/
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/3d-gm_lod2/
https://www.opengeodata.nrw.de/produkte/geobasis/3d-gm/3d-gm_lod2/
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georocket property set -props deleted:2018-09-13 \
AND(Schildergasse Köln)

We then imported the new buildings:
georocket import Schildergasse_update.gml

After this, we were able to download the complete city model
of Cologne excluding the old models of the Schildergasse with the
following query:
georocket search AND(NOT(LTE(deleted 2018-09-13)) Köln)

This query matches all objects from Cologne but not those
that have a deleted property whose value is less than or equal
to 2018-09-13.

All operations performed very fast. Setting the property was
finished in a few milliseconds. The new file was only a few MiB
large and importing it was a matter of seconds. The latency for
downloading the complete city model of Cologne was again very
low (a few milliseconds).

If the municipality or federal agency wanted to actually delete
old data from the dataset on a regular basis for the sake of
housekeeping (e.g. at the end of every year), they could use the
following command:

georocket delete LT(deleted 2018)

This command would remove all objects from the dataset that
have been marked as deleted in 2017 or earlier. GeoRocket is
able to automatically parse dates in ISO format and compare their
values accordingly.

4. Impact

As mentioned in Section 1, geospatial data is increasingly
becoming larger and more complex. Users are faced with new
problems related to data volume and heterogeneity, as well as the
speed with which data is acquired. One of the aims of developing
GeoRocket was to make it possible to analyze and share such data
by leveraging the possibilities of the cloud. This has opened up a
number of new research directions and potential for changing the
way users and companies work with Big Geo Data.

Firstly, we are currently working on developing novel visual
analysis methods for large geospatial datasets. In the research
project DataBio funded by the European Commission (grant
agreement No. 732064), we are using GeoRocket as a store for
data from the agricultural domain. Based on this, we are devel-
oping a visual tool to interactively explore the dataset and to
perform analyses and aggregations.

We are also using GeoRocket in the area of Smart City Clouds
where it enables users to access and share the large amounts
of information collected in a Smart City for the first time for
use cases such as urban planning or traffic management. In this
respect, we have extended GeoRocket with means to encrypt
data in the cloud while keeping the possibility to search it us-
ing Searchable Symmetric Encryption (SSE) [31]. We have also
explored the possibility to share geospatial data in a secure way
in a Smart City Cloud for applications related to security [32].
Furthermore, we discussed the possibility to use GeoRocket in the
area of processing of large geospatial data for use cases such as
land monitoring or urban planning [7, pp. 48–49 and 163–164].

Besides the research opportunities, we believe GeoRocket also
benefits users and companies. As mentioned in Section 1, there
are existing products that can manage geospatial data, but they
typically have a monolithic software architecture and are sup-
posed to run in a traditional client/server setting. GeoRocket, on
the other hand, has been designed to run in the cloud and to
leverage its possibilities, not only in terms of performance and
scalability but also cost-effectiveness. Deploying GeoRocket to
the cloud can be much less expensive for users and companies
than maintaining dedicated on-premise hardware. This partic-
ularly applies to public administrations or small and medium
enterprises.

5. Conclusions

In this paper, we presented GeoRocket, a scalable and cloud-
based data store for geospatial files. We compared it to existing
products and described its architecture and query language. We
also presented an illustrative example showing how GeoRocket
can be used in a real-world application. Finally, we discussed the
impact of our software with regards to opportunities for scientific
research and commercial exploitation.

There is an ongoing paradigm shift in Computer Sciences
towards Cloud Computing. This particularly applies to Geoinfor-
matics, which has only started to make successful use of the
cloud. GeoRocket is one of the first applications that is specifically
designed to manage geospatial data and to run in the cloud. In
this paper, we were able to show that our novel approach to data
handling based on splitting files into chunks and indexing them
individually has many benefits regarding performance, scalability,
and usability. Since GeoRocket is schema-agnostic, it supports a
wide range of geospatial datasets and can be used in multiple ap-
plications. It is also format-preserving and avoids information loss
that typically happens when you have to transform data between
different models. These properties make GeoRocket superior to
existing solutions.

The illustrative example presented in the paper only scratches
the surface of what is possible with GeoRocket. In Section 4,
we already mentioned briefly that we are also working on vi-
sual analysis methods and secure data storage. In the future,
we will focus on novel approaches to increase the use of the
large amounts of data managed by GeoRocket through Big Data
methods and Visual Analytics. We will also further improve the
performance of GeoRocket and explore its use for time series and
other spatiotemporal data.
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