
Efficient scheduling of scientific workflow actions
in the Cloud based on required capabilities

Michel Krämer1,2[0000−0003−2775−5844]

1 Fraunhofer Institute for Computer Graphics Research IGD, Fraunhoferstr. 5,
64283 Darmstadt, Germany

2 Technical University of Darmstadt, 64289 Darmstadt, Germany
michel.kraemer@igd.fraunhofer.de

Abstract. Distributed scientific workflow management systems process-
ing large data sets in the Cloud face the following challenges: (a) work-
flow tasks require different capabilities from the machines on which they
run, but at the same time, the infrastructure is highly heterogeneous,
(b) the environment is dynamic and new resources can be added and
removed at any time, (c) scientific workflows can become very large with
hundreds of thousands of tasks, (d) faults can happen at any time in a
distributed system. In this paper, we present a software architecture and
a capability-based scheduling algorithm that cover all these challenges in
one design. Our architecture consists of loosely coupled components that
can run on separate virtual machines and communicate with each other
over an event bus and through a database. The scheduling algorithm
matches capabilities required by the tasks (e.g. software, CPU power,
main memory, graphics processing unit) with those offered by the avail-
able virtual machines and assigns them accordingly for processing. Our
approach utilises heuristics to distribute the tasks evenly in the Cloud.
This reduces the overall run time of workflows and makes efficient use
of available resources. Our scheduling algorithm also implements optimi-
sations to achieve a high scalability. We perform a thorough evaluation
based on four experiments and test if our approach meets the challenges
mentioned above. The paper finishes with a discussion, conclusions, and
future research opportunities. An implementation of our algorithm and
software architecture is publicly available with the open-source workflow
management system “Steep”.

Keywords: Scientific Workflow Management Systems · Cloud Comput-
ing · Distributed Systems · Task Scheduling.

1 Introduction

With the growing amount of global data, it becomes more and more necessary
to automate data processing and analysis. Specialised task automation systems
are used in areas such as Bioinformatics [31], Geology [18], Geoinformatics [25],
and Astronomy [5] to transform data and to extract or derive knowledge. A spe-
cial kind of those task automation systems are scientific workflow management

This is a post-peer-review, pre-copyedit version of the article. The final authenticated version is available online at:
https://doi.org/10.1007/978-3-030-83014-4_2

https://doi.org/10.1007/978-3-030-83014-4_2


2 M. Krämer

systems. They focus on data-driven scientific workflows, which are typically rep-
resented by directed acyclic graphs that describe in what order processing tasks
need to be applied to a given input data set to produce a desired outcome. Sci-
entific workflows can become very large with hundreds up to several thousands
of tasks processing data volumes ranging from gigabytes to terabytes.

Modern scientific workflow management systems operate in a distributed
manner. They can utilize resources of computing infrastructures such as the
Grid [14] or the Cloud [29] to horizontally scale out. This not only speeds up
workflow execution but also allows data sets of arbitrary size exceeding the stor-
age capabilities of single computers (Big Data) to be processed. To accomplish
this, distributed infrastructures combine the computational power and storage
resources of a large number of independent machines. This imposes a challenge
on scientific workflow management systems: How can workflow tasks be assigned
to these machines in a smart way to make best use of available resources?

The general task scheduling problem is known to be NP-complete [38,23] and
of high interest to the research community. Several approaches with varying aims
and requirements have been published to find practical solutions for the Grid
and the Cloud [20,34]. In this paper, we present a distributed task scheduling
algorithm and a corresponding software architecture for a scientific workflow
management system that specifically targets the Cloud. The main challenges that
need to be covered in this respect are, on the one hand, that machines are highly
heterogeneous in terms of hardware, number of virtual CPUs, main memory,
and available storage, but also with regard to installed software, drivers, and
operating systems. On the other hand, the different tasks in a scientific workflow
also have requirements. A compute-intensive task might need a minimum number
of CPUs or even a graphics processing unit (GPU), whereas another task might
require a large amount of main memory, and a third one needs a specific software
to be installed. In other words, machines have certain capabilities and tasks have
requirements regarding these capabilities (or required capabilities). This has to be
considered during task scheduling. As shown in Section 2, this concept has not
been fully covered by existing approaches yet.

In addition to the heterogeneity of machines, the topology of a Cloud is
highly dynamic. New compute and storage resources can be added on demand
and removed at any time. This property is often used to scale a distributed
application up when needed (e.g. to manage peak load or to speed up processing)
and later down again to save resources and, in consequence, money. Of course,
scaling up only makes sense if work can actually be distributed, which is typically
the case when a workflow is very large and contains many tasks that could
potentially be executed in parallel.

As mentioned above, workflow tasks should be assigned to machines in a
smart way in order to optimise resource usage, reduce the total time it takes to
complete a workflow, and, in consequence, save money by freeing up resources as
soon as possible. However, in a distributed environment whose topology changes
dynamically and that is used by multiple tenants at the same time, it is impos-
sible to calculate an optimal task-to-machine mapping in advance to achieve the



Scheduling of workflow actions based on required capabilities 3

“perfect” run time. Instead, task scheduling has to be performed during workflow
execution and needs to be able to adapt dynamically to changing conditions.

It is further known that in a distributed environment (and in a Cloud in
particular), faults such as crashed machines, network timeouts, or missing mes-
sages can happen at any time [10]. This highly affects the execution of scientific
workflows, which often take several hours or even days to complete.

1.1 Challenges and requirements

To summarise the above, a scientific workflow management system running in
the Cloud has to deal with at least the following major challenges:

Capability-based scheduling

Workflow tasks require different
capabilities from the machines
but, in contrast, the infrastruc-
ture is highly heterogeneous.

Dynamic environment

The execution environment is
highly dynamic and new com-
pute resources can be added and
removed on demand.

Scalability

Scientific workflows can become
very large and may contain hun-
dreds of thousands of tasks.

Fault tolerance

In a distributed system, faults
such as crashes or network errors
can occur at any time.

From these challenges, we derive specific requirements that our scheduling
algorithm and software architecture should meet:

REQ 1. The algorithm should be able to assign tasks to heterogeneous
machines, while matching the capabilities the tasks need with the capa-
bilities the machines provide.

REQ 2. Tasks should be assigned to parallel machines in an optimised
manner so that the overall run time of the workflow is reduced.

REQ 3. Our system should not assume a static number of machines. It
should horizontally scale the workflow execution to new machines added
to the cluster and be able to handle machines being removed (be it be-
cause a user or a service destroyed the machine or because of a fault).



4 M. Krämer

REQ 4. If necessary, the execution of workflow tasks that require capa-
bilities currently not available in the cluster should be postponed. The
overall workflow execution should not be blocked. The algorithm should
continue with the remaining tasks and reschedule the postponed ones as
soon as machines with the required capabilities become available.

REQ 5. The system should support rapid elasticity. This means it should
automatically trigger the acquisition of new machines on demand (e.g.
during peak load or when capabilities are missing).

REQ 6. The system should be scalable so it can manage both a large
number of tasks as well as a large number of machines.

REQ 7. As faults can happen at any time in a distributed environment,
our system should be able to recover from those faults and automatically
continue executing workflows.

1.2 Contributions

In the scientific community, dynamically changing environments, very large work-
flows, and fault tolerance are considered major challenges for modern distributed
scientific workflow management systems, but they have not been fully covered
by existing approaches yet and therefore offer many research opportunities [11].
In the previous section, we discussed these challenges and added another major
one, namely that tasks in a scientific workflow need certain capabilities from the
machines but the Cloud is highly heterogeneous.

A system that addresses all four of these challenges needs to be designed from
the ground up with them in mind. To the best of our knowledge, none of the
existing approaches, algorithms, and systems cover all of them in one design (see
also our comparison with related work in Section 2). In this paper, we present
such an algorithm as well as the software architecture of a scientific workflow
management system in which the algorithm is embedded.

Our scheduling algorithm is able to assign workflow tasks to heterogeneous
machines in the Cloud based on required capability sets. The software architec-
ture consists of a set of components that communicate with each other through
an event bus and a database to perform task scheduling in an efficient, scalable,
and fault-tolerant manner.

A full implementation of our approach is publicly available with the Steep
Workflow Management System, which has been released under an open-source
licence on GitHub: https://steep-wms.github.io/

https://steep-wms.github.io/


Scheduling of workflow actions based on required capabilities 5

1.3 Differences to the conference paper

This paper is a significant extension of our conference paper presented at DATA
2020 [26]. In the previous work, we introduced a first version of our algorithm
and software architecture. In the meantime, we were able to explore new re-
search aspects and, as a result of this, to significantly improve our approach. In
summary, the extended paper covers the following additional topics:

– We improved our scheduling algorithm to use heuristics (Section 5.3) in or-
der to distribute tasks more evenly to machines. Our old approach did not
fully use available resources. We therefore added a new requirement regard-
ing optimised allocation of tasks to machines (REQ 2). Our new approach
significantly reduces the overall run time of workflows.

– In addition, we implemented several optimisations to improve the scalability
of our approach, not only in terms of amount of work it can handle but also
to support thousands of machines running in parallel (Sections 5.4 and 5.5).

– We conducted a completely new evaluation to test our new approach and to
show how it compares with our old one (Section 7). The evaluation now also
measures the performance of our scheduling algorithm (Section 7.2).

– We improved our software architecture so multiple agents can be started on
a single virtual machine (Section 4). We make use of this new feature in our
scalability experiment.

– Section 4.1 now describes virtual machine setups, which are an integral part
of our architecture to create virtual machines with given capabilities.

– We added more details about our scheduling algorithm (Section 5) and an
illustrative example (Section 6).

1.4 Structure of the paper

The remainder of this paper is structured as follows. We first analyse the state of
the art in Section 2. Then, we introduce an approach to map scientific workflow
graphs dynamically to individual process chains (i.e. linear sequences of work-
flow tasks), which can be treated independently by our scheduling algorithm
(Section 3). We describe the software architecture in Section 4 and finally our
main contribution, the scheduling algorithm, in Section 5. An illustrative exam-
ple in Section 6 demonstrates how our system works in practise. We also present
the results of four experiments we conducted to evaluate if our approach meets
the challenges and requirements defined above (Section 7). We finish the paper
in Section 8 with conclusions and future research opportunities.

2 Related Work

There are various algorithms performing task scheduling. Their aims vary from
each other but most of them try to optimise resource usage and to reduce the
makespan, i.e. the time passed between the start of the first task in a sequence
and the end of the last one. For this, they implement heuristics. Min-Min and



6 M. Krämer

Max-Min [22,15], for example, iterate through all tasks in the sequence and cal-
culate their earliest completion time on all machines. Min-Min schedules the task
with the minimum earliest completion time while Max-Min selects the task with
the maximum one. This process continues until all tasks have been processed.

In contrast, the Sufferage algorithm reassigns a task from machine M to
another one if there is a second task that would achieve better performance
on M [28]. As an extension to this approach, Casanova et al. present a heuris-
tic called XSufferage, which also considers data transfer costs [9]. The authors
claim their approach leads to a shorter makespan because of possible file reuse.
Gherega and Pupezescu improve this algorithm even further and present DXSuf-
ferage, which is based on the multi-agent paradigm [16]. Their approach prevents
the heuristic itself from becoming a bottleneck in the scheduling process. For in-
creased flexibility, Nayak and Padhi present an approach that first analyses all
tasks to be scheduled and then, based on the current situation, selects from
different heuristics to achieve the best performance [30].

Our approach is also based on heuristics. Since it is very hard to analyse tasks
and to predict their earliest completion time on heterogeneous virtual machines
in a dynamic environment like the Cloud, our approach uses the remaining num-
ber of workflow tasks for a certain set of required capabilities to evenly distribute
work to machines and to adapt to changing conditions during run time.

Other dynamic approaches are based on genetic algorithms (GA), which mim-
ics the process of natural evolution by using historical information. A GA selects
the best mapping of tasks to machines. Good results with this type of algorithms
were achieved by Hamad and Omara who use Tournament Selection [19] or by
Page and Naughton whose algorithm does not make assumptions about the char-
acteristics of tasks or machines [32].

Applying behaviour known from nature to task scheduling is an idea that has
lead to other noteworthy approaches: Ant colony optimisation [35,27] tries to
dynamically adapt scheduling strategies to changing environments. Thennarasu
et al. present a scheduler that mimics the behaviour of humpback whales to
maximize work completion and to meet deadline and budget constraints [36].

The algorithms mentioned above can be used to schedule individual tasks. In
contrast, there are more complex approaches that consider the interdependencies
in the directed acyclic graphs of scientific workflows. Blythe at al. investigate
the difference between task-based and workflow-based approaches [7]. They con-
clude that data-intensive applications benefit from workflow-based approaches
because the workflow system can start to transfer data before it is used by the
tasks, which leads to optimised resource usage. Binato et al. present such a
workflow-based approach using a greedy randomized adaptive search procedure
(GRASP) [6]. Their algorithm creates multiple scheduling solutions iteratively
and then selects the one that is expected to perform best. Topcuoglu et al.
present two algorithms: HEFT and CPOP [37]. HEFT traverses the complete
workflow graph and calculates priorities for individual tasks based on the num-
ber of successors, average communication costs, and average computation costs.
CPOP extends this and prioritises critical paths in workflow graphs.



Scheduling of workflow actions based on required capabilities 7

Scientific workflow management systems such as Pegasus [12], Kepler [1],
Taverna [21], Galaxy [17], Argo [3], Airflow [2], and Nextflow [13] typically
implement one or more of the algorithms mentioned above. There are other
frameworks to process large data sets in the Cloud. Most noteworthy systems
are Spark [39] and Flink [8]. They are not workflow management systems but
follow a similar approach and also need to schedule tasks from a directed graph.

There are some similarities between our approach and existing ones. DX-
Sufferage, for example, uses the multi-agent paradigm [16]. Similar to agents,
our components are independent and communicate with each other through
an event bus. There can be multiple schedulers sharing work and processing the
same workflow. In addition, we convert workflow graphs to process chains, which
group tasks with the same required capabilities and common input/output data.
Just like in XSufferage [9], this can potentially lead to better file reuse.

Note that our approach is not directly comparable to workflow-based schedul-
ing algorithms that consider the graph in total. Instead, we employ a hybrid
strategy that first splits the graph into process chains and then schedules these
instead of individual tasks.

3 Traversing scientific workflow graphs

Figure 1a shows an example of a scientific workflow represented by a directed
graph. An input file (the circle with the dot) is first consumed by task A, which
produces two output files. These files are then processed independently (and
possibly in parallel) by tasks B and D. The result of B is further transformed by
task C. The results of C and D are consumed by a task E, which produces the
final outcome of the workflow. The figure uses the extended Petri Net notation
proposed by van der Aalst and van Hee (2004).

Our scientific workflow management system transforms such workflow graphs
into individual executable units called process chains. These are linear sequential
lists of tasks (without branches and loops) that can be scheduled independently
on virtual machines in the Cloud. In order to find process chains, our system
traverses the graph and looks for tasks that require the same capabilities from
the machines. On each junction (i.e. when a task creates more outputs than it
consumes inputs; or the other way around), the system creates a new process
chain. For the example in Figure 1a, the system creates a process chain for
task A, then two chains (one containing B and C, and another one containing
only D), and a final one for task E. The chains with B/C and D can be assigned
to separate virtual machines and executed in parallel according to our algorithm
presented in Section 5.

In our implementation, capabilities are user-defined strings. For example, the
set {Ubuntu, GPU} might mean that a task depends on the Linux distribution
Ubuntu as well as the presence of a graphics processing unit. In the following,
we call the union of the required capabilities of all tasks in a process chain a
required capability set.



8 M. Krämer

A

B D

E

C

(a) Workflow graph

A

B D

C

E

(b) Generated process chains

Fig. 1: A workflow is split into four individual process chains [26].

4 Software architecture

Our scientific workflow management system consists of four main components:
the HTTP server, the controller, the scheduler, the agent, and the cloud manager
(see Figure 2). Typically, one instance of our system will be deployed to exactly
one virtual machine in the Cloud. If necessary, it is possible to run multiple
instances on the same machine.

Each component can be enabled or disabled in a given instance. In a cluster,
there can be one primary instance, for example, that has only the controller and
scheduler enabled, and multiple secondary instances each running one agent.
In addition to that, the agent can be spawned more than once inside a single
instance. This allows this instance to run multiple workflow tasks in parallel and
to make best use of available resources (for example, if each workflow task only
requires one CPU core or a limited amount of memory).

The system contains an event bus that is used by all components of all
instances to communicate with each other. Moreover, the HTTP server, the
controller, and the scheduler are connected to a shared database where they
manage workflows and process chains. In the following, we describe the roles
and responsibilities of each component.

The HTTP server is the main entry point to our system. It provides in-
formation about scheduled, running, and finished workflows to clients. If the
HTTP server receives a new workflow from a client, it stores the workflow in the
database and sends a message to one of the instances of the controller.



Scheduling of workflow actions based on required capabilities 9

HTTP
server Controller Scheduler

Instance 1 Instance n

Agent 1 ...

Database

Event bus

Cloud
manager H C S A M

Fig. 2: An overview of the components in our scientific workflow management
system and how they communicate with each other.

The controller receives this message, loads the workflow from the database,
and starts transforming it iteratively to process chains as described in Section 3.
Whenever it has generated new process chains, it puts them into the database
and sends a message to all instances of the scheduler.

The schedulers then apply our algorithm (see Section 5) and select agents to
execute the process chains. They load the process chains from the database, send
them via the event bus to the selected agents for execution. Upon completion,
they write the results into the database. The schedulers also send a message back
to the controller so it can continue with the next iteration and generate more
process chains until the workflow has been completely transformed.

In case a scheduler does not find an agent suitable for the execution of a
process chain, it sends a message to the cloud manager. This component inter-
acts with the API of the Cloud infrastructure, creates new virtual machines on
demand, and deploys agents to them. This is based on so-called virtual machine
setups, which are described in Section 4.1.

Note that messages between the HTTP server, the controller, and scheduler
may get lost (e.g. because of network failures). Due to this, the controller and
the scheduler also check the database for new workflows and process chains
respectively at a regular interval. We found 20 seconds to be a sensible value in
practise, but in our implementation, this is configurable. This approach decouples
the components from each other and increases fault tolerance.

4.1 Virtual machine setups

The cloud manager component creates virtual machines (VMs) on demand and
deploys software to it including at least one instance of our workflow management
system with one or more enabled agents. The process of deploying software is
called provisioning. The kind of VM to create as well as the actual software to
be deployed depend on the capabilities that the process chains to be executed
on this VM require. For example, for a process chain that needs a graphics



10 M. Krämer

processing unit (GPU), the cloud manager will create a VM with such a device
and deploy the necessary drivers to it.

The behaviour of the cloud manager is configurable. The mapping between
required capabilities and VM types (sometimes called flavors or instance types;
depending on the Cloud provider) is specified in a configuration file, and the
software is deployed by provisioning templates. These templates are shell scripts
that the cloud manager executes on the virtual machines right after they have
been created. The last step in each set of provisioning templates always starts
an instance of our system, so the cloud manager knows when the provisioning
process has completed and the new agents can be used for scheduling.

Each set of provisioning templates and the corresponding mapping from re-
quired capabilities to VM types is called a virtual machine setup in our system.

5 Capability-based scheduling algorithm

This section introduces the capability-based scheduling algorithm that is ex-
ecuted in our scheduler component. First, the main scheduling function (Sec-
tion 5.1) is described as well as how our algorithm selects candidate agents
(Section 5.2) based on heuristics (Section 5.3). After that, database queries (Sec-
tion 5.4) and optimisations for improved scalability (Section 5.5) are discussed.

5.1 Main scheduling function

As mentioned above, the scheduler runs at regular intervals and immediately
after new process chains have been added to the database. Listing 1.1 shows the
main function of our algorithm that assigns process chains to agents.

Our algorithm first calls the function findRequiredCapabilitySets(), which per-
forms a database query to retrieve all distinct sets of capabilities required to ex-
ecute the process chains not scheduled yet. In other words, given a capability set
Ri = {c1, ..., cn} for a process chain pci, the result of findRequiredCapabilitySets()
is a set S = {R1, ..., Rm} of distinct required capability sets.

From line 3 on, our algorithm performs up to maxLookups scheduling oper-
ations. After the regular interval or when new process chains have been added,
the function will be called with maxLookups set to infinity. The main idea is
that the algorithm will try to schedule as many process chains as possible until
it reaches a break statement. There is only one of these statements in line 12. It
is reached when all agents indicate they are not available (see details below).

Inside the main for loop, the function first selects a set of candidate agents
that are able to execute at least one of the given required capability sets from S
(line 4) by calling the function selectCandidates(). This function is described in
detail in Section 5.2. In short, it returns a list of pairs of a candidate agent and
the required capability set R it can execute.

If this list is empty (line 5), all agents are currently busy or there is no agent
that would be able to execute at least one R ∈ S (i.e. none of them is available).
In this case, the function iterates over all required capability sets (line 8) and



Scheduling of workflow actions based on required capabilities 11

1 function lookup(maxLookups):
2 S = findRequiredCapabilitySets()

3 for i ∈ [0, maxLookups):
4 candidates = selectCandidates(S)

5 if candidates == ∅:
6 /∗ All agents are busy or none of them
7 have the required capabilities. ∗/
8 for R ∈ S:
9 if existsProcessChain(R):

10 launch:
11 requestAgent(R)
12 break

13 for (candidate, R) ∈ candidates:
14 pc = findProcessChain(R)
15 if pc == undefined:
16 /∗ All process chains with R were
17 executed in the meantime. ∗/
18 continue

19 agent = allocate(candidate)
20 if agent == undefined:
21 /∗ Agent is not available any more. ∗/
22 continue

23 /∗ Execute process chain
24 asynchronously. ∗/
25 launch:
26 executeProcessChain(pc, agent)
27 deallocate(agent)

28 /∗ Agent is has become available.
29 Trigger next lookup. ∗/
30 lookup(1)

Listing 1.1: The main function of our algorithm checks what capabilities are
required at the moment and if there are available agents that can execute process
chains with these capabilities. If so, it retrieves such process chains from the
database and schedules their execution [26].

checks if there actually is a corresponding process chain in the database (line 9).
This is necessary because all process chains with a certain required capability set
may have already been processed since findRequiredCapabilitySets() was called
(e.g. by another scheduler instance or in a preceding iteration of the outer for
loop). If there is a process chain, the function requestAgent will be called, which
asks the cloud manager component (see Section 4) to create a new VM with



12 M. Krämer

an agent that has the given required capabilities (line 11). We use the keyword
launch here to indicate that the call to requestAgent is asynchronous, meaning
the algorithm does not wait for an answer.

The algorithm then leaves the outer for loop because it is unnecessary to
perform any more scheduling operations while none of the agents can execute
process chains (line 12). Process chains with required capabilities none of the
agents can provide will essentially be postponed. As soon as the cloud manager
has created a new agent with the missing capabilities, the lookup function will
be called again and any postponed process chains can be scheduled.

If there are agents available that can execute process chains with any of
the required capability sets from S, the algorithm iterates over the result of
selectCandidates() in line 13. For each pair of a candidate agent and the corre-
sponding required capability set R it can execute, the algorithm tries to find a
matching registered process chain with R in the database. If there is none, it as-
sumes that all process chains with this required capability set have already been
executed in the meantime (line 15). Otherwise, it tries to allocate the candidate
agent, which means it asks it to prepare itself for the execution of a process chain
and to not accept other requests anymore (line 19). If the agent cannot be allo-
cated, it was probably allocated by another scheduler instance in the meantime
since selectCandidates was called (line 20).

Otherwise, the algorithm launches the execution of the process chain in the
background and continues with the next scheduling operation. The code block
from line 25 to line 30 runs asynchronously in a separate thread and does not
block the outer for loop. As soon as the process chain has been executed com-
pletely in this thread, our algorithm deallocates the agent in line 27 so it becomes
available again. It then calls the lookup function and passes 1 for maxLookups
because exactly one agent has become available and therefore only one process
chain has to be scheduled.

5.2 Selecting candidate agents

The function selectCandidates takes a set S = {R1, ..., Rn} of required capability
sets and returns a list L = {P1, ..., Pm} of pairs P = (a,Ri) of an agent a and
matching required capability set Ri. Listing 1.2 shows the pseudo code.

The function uses the event bus to send all required capability sets to each
agent. The agents analyse the required capability sets based on defined heuristics
(see Section 5.3) and then reply whether they are available and which set they
support best. The function collects all responses in a set of candidates. Finally,
it selects exactly one agent for each required capability set.

Note that some or all agents might not be available, in which case the result
of selectCandidates contains less required capability sets than S or is even empty.

5.3 Scheduling heuristics

An agent receives required capability sets from the scheduler and matches them
against the capabilities it actually has. For example, let us assume one of these



Scheduling of workflow actions based on required capabilities 13

1 function selectCandidates(S):
2 candidates = ∅

3 for a ∈ Agents:
4 send S to a and wait for response
5 if a is available:
6 get best Ri ∈ S from response
7 P = (a,Ri)
8 candidates = candidates ∪ {P}

9 L = all P ∈candidates with best a for each Ri

10 return L

Listing 1.2: Pseudo code of the function that selects agents based on their capa-
bilities [26].

sets is {Ubuntu, GPU} (as described in Section 3, capabilities are user-defined
strings). The agent will only consider this set if it actually runs on Ubuntu and
has a GPU (as specified in its VM setup; see Section 4.1).

After the agent has selected all required capability sets it generally supports,
it chooses one set for which it would like to receive process chains to execute. In
Listing 1.2, this is called the “best” Ri ∈ S.

In our previous work, we only had one heuristic that selected the best agent
for a certain required capability set based on the longest idle time [26]. In prac-
tise, this has proven to achieve good throughput and, at the same time, to
prevent starvation because every agent was selected eventually.

Our new approach extends the existing heuristic. When selecting the best ca-
pability set, the agent now also considers the number of remaining process chains
in the database for each Ri ∈ S. If two or more capability sets are supported
similarly well, the agent selects the one with the highest number of remaining
process chains. This makes sure process chains are distributed more evenly to
agents supporting similar capabilities (see our evaluation results in Section 7).

5.4 Caching database queries

The function findRequiredCapabilitySets performs a database query to look for
distinct required capability sets. Queries for distinct values are complex and can
take quite some time, especially for very large collections. The only way to find
all distinct values is to perform a sequential scan on the collection. Most DBMS
even have to sort the collection first. There are approaches to find approximations
of distinct values [24,4] but our algorithm needs exact results.

Such a query should not be performed too often as it can drastically impact
the throughout of the scheduler. As an optimisation, we use a cache to keep
distinct required capability sets in memory until the next regular scheduling in-



14 M. Krämer

terval. This can lead to inconsistencies if multiple schedulers access the database
and their caches become outdated. In the worst case, two things can happen:

– The cache may still contain required capability sets of process chains that
have already been executed. In this case, the algorithm will not find a match-
ing process chain in the database (line 15) and just continue with the next
candidate agent and required capability set. This means, there may be un-
necessary queries per scheduling operation, but these queries are negligibly
fast because they can be implemented with simple SELECT-WHERE state-
ments that make use of an index.

– One or more required capability sets may be missing from the cache. This
can only happen if new process chains are added to the database while a
scheduling operation is currently running. Adding new process chains will,
however, trigger a cache update, so the next scheduling operation will use
all required capability sets.

In any case, the cache will be updated at the regular interval, which will
eliminate unnecessary queries and trigger the scheduling of remaining process
chains.

5.5 Optimisations for improved scalability

Another possible bottleneck of our algorithm besides database queries is the
selectCandidates function, which sends required capability sets to all agents.
Even though all capability sets can be sent together in one message, in a setup
with n process chains and m agents, n×m messages need to be sent per workflow
execution. Since these messages are sent over the event bus and possibly through
a slow network, the execution of selectCandidates can significantly affect the time
it takes to schedule a single process chain and, as a consequence, the run time
of the whole workflow.

In addition to caching database queries, we therefore implemented two other
optimisations. First, each scheduler instance caches the capabilities supported
by the individual agents. This allows it to skip those agents that definitely do
not support a certain required capability set. Second, the scheduler also keeps
track of which agents are currently executing process chains (i.e. to which of
them it has sent a process chain and has not received a result yet). Those agents
can also be skipped as they would respond that they are unavailable anyhow. In
the best case, when all agents are busy except one, the scheduler only needs to
ask this agent and can skip the others.

6 Illustrative example

Figure 3 shows an example of how our scheduling algorithm works in practise.
Note that it represents one specific case (other control flows are possible) but
covers almost all aspects of our algorithm and architecture.



Scheduling of workflow actions based on required capabilities 15

Database:
500 process chains

Scheduler

Cloud Manager

Docker

Python

GPU

Cloud:
2 agents, 1 busy

request agents

distinct

1

2

3

4

A1 C++

A2 (busy) Docker

PC 1 Docker

PC 2 Docker

PC i PythonTF

TF

PC j+1 Docker

PC j GPU

PC i+1 GPU

(a) The scheduler accesses the database,
the agents, and the cloud manager.

distinct

Database:
500 process chains

Scheduler

Cloud:
5 agents, 1 busy

5 6
PC 1 Docker

PC 2 Docker

PC i PythonTF

PC j+1 Docker

PC j GPU

PC i+1 GPU

A3 Docker

A5 GPU

A1 C++

A4 PythonTF

A2 (busy) DockerDocker

Python

GPU

TF

(b) The second scheduling step utilises
the newly created agents.

Python

A3 Docker

Docker

GPU

A5 GPU

A3 Docker

A5 GPU

fetch
process

chain

Database:
500 process chains

SchedulerPC 1 Docker A1 C++

PC 2 Docker

PC i PythonTF

TF

A4 PythonTF

A4 PythonTF

PC j+1 Docker

PC j GPU

PC i+1 GPU

A2 (busy) Docker

Cloud:
5 agents, 1 busy

7

8

9

(c) Process chains are assigned to the
new agents one by one.

A3 (busy)Docker

A5 (busy) GPU

Database:
497 process chains

Scheduler A1 C++

PC 2 Docker

A4 (busy) PythonTF

PC j+1 Docker

PC j GPU

A2 (busy) Docker

Cloud:
5 agents, 4 busy

(d) At the end, the new agents are busy
executing process chains.

Fig. 3: Illustrative scheduling example

At the beginning, there are 500 process chains in the database to be sched-
uled. Some of them require “Docker” to be installed on the virtual machine on
which they will be executed, others require “TF” (TensorFlow) and “Python”,
and a third group requires the VM to have a graphics processing unit (“GPU”).
Two agents are currently running in the Cloud. One supports “C++” applica-
tions and the other one has “Docker” installed but is currently busy.

In the first scheduling step (Figure 3a), the scheduler fetches distinct re-
quired capability sets from the database 1 . It gets {Docker}, {TF, Python},
and {GPU} 2 . The scheduler then sends these sets to all agents 3 . Agent A1
responds that it does not support any of these capabilities, and agent A2 indi-
cates that it is currently busy. Since there are no agents available, the scheduler
sends the required capabilities to the cloud manager and tells it to create new
VMs 4 . The first scheduling step stops at this point.

After the cloud manager has created new VMs and deployed agents to it (Fig-
ure 3b), the next scheduling step starts. The scheduler fetches distinct required
capability sets from the database again 5 and sends them to all agents 6 (ex-
cept A1 because it knows it does not support the capabilities). This time, the



16 M. Krämer

new agents A3, A4, and A5 respond that they are available and which capability
sets they support.

Once the scheduler has received all answers (Figure 3c), it fetches a process
chain for the capability set {Docker} from the database and assigns it to agent
A3 7 . This process repeats for {TF, Python} and {GPU}, which are assigned
to A4 and A5, respectively 8 9 .

At the end of the second scheduling step (Figure 3d), all new agents are busy.
As soon as one of them becomes available again, a next step will be triggered to
schedule the remaining process chains in the database.

7 Evaluation

In order to evaluate if our scheduling algorithm and our software architecture
meet the challenges and requirements defined in Section 1.1, we conducted four
practical experiments (one for each challenge). This section presents the results
of these experiments and discusses benefits and drawbacks of our approach.

All experiments were performed in the same environment (a private Open-
Stack Cloud). We set up our system so that it had access to the API of the Open-
Stack Cloud and was able to create virtual machines on demand. We deployed
the full stack of components presented in Section 4 to each virtual machine. All
components communicated with each other through a distributed event bus. We
also deployed a MongoDB database on a separate virtual machine to which the
components had access.

We defined four VM setups for virtual machines and agents with the ca-
pability sets R1, R2, R3, and R4 respectively, as well as fifth one with both
capability sets R3 and R4. To simulate a heterogeneous environment, we con-
figured a maximum number of virtual machines that our system was allowed to
create per required capability set. Table 1 shows the settings we chose for the
individual experiments. Note that in experiment 1, 2, and 4, we deployed one
agent per virtual machine. In experiment 3 where we tested the scalability of our
system, we deployed 125 agents per virtual machine resulting in a total number
of 1 000 agents.

Table 1: Maximum number of virtual machines configured for each required
capability set.
Required capability set Maximum number of virtual machines

R1 2

R2 2

R3 1

R4 1

R3 + R4 2

Total 8



Scheduling of workflow actions based on required capabilities 17

For each experiment, we collected all log files of all instances of our system
and converted them to graphs. Figure 4 shows the results of experiments 1
and 2 including a legend. Each sub-figure—which we discuss in detail in the
following sections—depicts a timeline of a workflow run. The lanes (from left to
right) represent individual agents and indicate when they were busy executing
process chains. All required capability sets have different colours (see legend
in Figure 4e). The colour of the agents and the process chains specifies what
capabilities they offered or required respectively. A process chain has a start
(emphasized by a darker shade of the colour) and an end. In experiment 4, we
also killed agents on purpose. The point in time when the fault was induced is
marked by a black X (see Figure 5b).

7.1 Experiments

Experiment 1: Capability-based scheduling
(Requirements covered: REQ 1–2)

Figure 4a shows the results of our first experiment. One of our goals in this
paper was to create a scheduling algorithm that is able to assign workflow tasks
to distributed machines based on required and offered capabilities. The results
show that this goal was reached.

We deployed a static number of eight agents with different capability sets
and sent a workflow consisting of 100 process chains to one of the instances of
our system. As soon as the workflow was saved in the database, all scheduler
instances started assigning process chains to the individual agents. The colours
in the figure show that all process chains were correctly assigned. Agents A6
and A7 were able to execute process chains requiring both R3 and R4, which is
indicated by alternating colours. The workflow took 11 minutes and 48 seconds
to complete in total.

Note that these results also show a significant improvement of our algorithm
compared to our earlier work [26]. This is mostly due to the new scheduling
heuristics presented in Section 5.3. Previously, as shown in Figure 4b, agents A6
and A7 preferred to accept process chains with R3 first before they continued
with R4. This resulted in an inefficient use of resources. Agent A4 was not used
completely during the workflow run and too much work was allocated to A3, A6,
and A7. The workflow took 13 minutes and 14 seconds. Our improved algorithm
is about one and a half minutes faster and distributes work much more evenly.

Experiment 2: Dynamic environment
(Requirements covered: REQ 1–5)

Our second experiment started with only one agent supporting capability set R1.
We executed a workflow with 1 000 process chains. Figure 4c shows the timeline
of the workflow run.

According to our algorithm, the scheduler first looked for available agents
to which to assign process chains. Since there was only one agent running, it
assigned process chains to it but also asked the cloud manager component to



18 M. Krämer

(a) 100 process chains are distributed to
agents with the correct capabilities.

(b) Results of experiment 1 from our ear-
lier work for comparison [26]

(c) The system creates agents with capa-
bilities required by 1 000 process chains.

(d) Results of experiment 2 from our ear-
lier work for comparison [26]

(e) Legend: colours for required capability sets, start and end of a process chain, and
time when an agent was killed.

Fig. 4: Results of experiments 1 and 2

create new agents for the other capability sets. Starting a virtual machine and
deploying itself to it took our system almost three minutes. Process chains requir-
ing missing capabilities were postponed but the scheduler continued assigning
the ones with R1. As soon as the new agents had started, process chains were
assigned to them.

Note that we configured our system to only create one virtual machine of a
certain capability set at a time. Also, as described earlier, we limited the number
of virtual machines per capability set. These are the reasons why only four new
agents appear at about minute 3, one more between minutes 3 and 4, and two
other ones around 6:30.

The experiment shows that our system can create new virtual machines on
demand and that the schedulers make use of new resources as soon as they
become available. Similarly to experiment 1, we compared the results with those
from our earlier work [26]. The workflow now took 16 minutes and 31 seconds
and was more than one and a half minutes faster than the previous 18 minutes
and 4 seconds. Workflow tasks were again distributed much more evenly to the
agents and resources were used reasonably.



Scheduling of workflow actions based on required capabilities 19

Experiment 3: Scalability

(Requirements covered: REQ 1–6)

In order to show the scalability of our system, we launched a workflow with
300 000 process chains. Similar to the second experiment, we started with one
virtual machine. The other ones were automatically created by our system on de-
mand. However, this time we increased the number of agents per virtual machine
to 125 resulting in a total number of 1 000 agents.

Figure 5a shows the timeline of the workflow over more than six and a half
hours. Note that we sorted the agents in this graph by capability set for better
legibility. Again, all process chains were assigned to the correct machines. Al-
though the number of process chains the system had to manage was very large,
it did not crash and kept being responsive the whole time. Also, the system was
able to handle the large number of agents without interruptions. There are no
gaps in the graph, which means new process chains were scheduled immediately
when an agent became available. This shows that our optimisations described
in Section 5.5 worked as expected. All agents also finished their work almost at
the same time, which means our scheduler distributed the work evenly (based
on the heuristics described in Section 5.3).

In our previous work, we performed a similar experiment but with only
150 000 process chains and 8 agents [26]. At that time, our system was not able
to manage 1 000 agents. Our improved approach is much more scalable now.

(a) The system is able to handle 300 000
process chains running on 1 000 agents
(sorted by capability set for better legi-
bility).

(b) The system is able to recover from
faults and to still finish all 1 000 process
chains from the current workflow.

Fig. 5: Results of experiments 3 and 4



20 M. Krämer

Experiment 4: Fault tolerance

(Requirements covered: all)

In our final experiment, we tested if our system can manage faults during a
workflow run. Figure 5b shows the timeline. We started with eight agents and
executed the same workflow as in experiment 2 with 1 000 process chains. Be-
tween minutes 2 and 3, we started to randomly kill agents by sending them a
SIGKILL signal (indicated in the figure by a black X).

We killed eight agents during the workflow run. The figure shows that each
time, the system was able to recover from the faults. It created new agents with
the missing required capabilities and started assigning process chains to them as
soon as they became available. Between minutes 3 and 7, approximately, there
was no agent able to execute process chains with R3. The execution of these
process chains was postponed and resumed later.

We performed the same experiment in our earlier work [26]. The results are
quite similar and our improved approach still works as expected.

7.2 Scheduling performance

In order to evaluate the performance of our approach, we measured the time it
took to schedule a single process chain (including asking all agents and fetch-
ing the process chain from the database). We did this for all experiments and
calculated the averages, medians, and standard deviations (see Table 2).

The results indicate that scheduling is in general very fast and does not
produce much overhead per process chain. They also show that our system is
scalable. Even in experiment 3 where we had to distribute 300 000 process chains
to 1 000 agents, the performance was not slower than in experiment 100. It also
stayed consistent throughout the whole workflow run. This is mostly due to the
optimisations described in Sections 5.4 and 5.5. Note that the performance in
experiment 3 was actually slightly better than in experiment 1 (on average by
about 1–1.5 ms), which is most likely due to the fact that our implementation
runs on the Java Virtual Machine, and the longer it runs, the better the just-in-
time compiler can optimise the code.

Table 2: Measured performance of the scheduler component for each experiment
(values are per process chain)
Experiment Average Median Std. deviation

1 16.3 ms 16 ms 2.1 ms

2 16.8 ms 16 ms 4.9 ms

3 15.1 ms 15 ms 3.9 ms

4 16.5 ms 16 ms 6.9 ms



Scheduling of workflow actions based on required capabilities 21

7.3 Discussion

The results of our experiments show that our system meets all of the challenges
and requirements for the management of scientific workflows in the Cloud defined
in Section 1.1.

In order to assign process chains to the correct machines with matching
capabilities, our scheduler asks each agent whether it wants to execute a process
chain with a given required capability set or not. An alternative approach would
be to let the agents fetch the process chains themselves whenever they are ready
to execute something. However, in this case, it would not be possible to create
agents on demand. If there is no agent fetching process chains, nothing can be
executed. Our scheduler, on the other hand, has an overview of all required
capability sets and can acquire new resources when necessary.

In our previous work [26], the scheduler only chose between multiple avail-
able agents by comparing their idle time. This was not very efficient and led to
unnecessary long workflow runs and unused resources. Our new approach with
improved heuristics and caching not only reduces the overall time of workflow
runs but also makes the system more scalable. Our previous experiments also
revealed small gaps in the workflow run, which could be traced back to the un-
optimised scheduling algorithm. We did not observe these gaps anymore with
the new approach.

According to our evaluation results, the heuristics presented in Section 5.3 are
quite effective. Nevertheless, more sophisticated approaches also considering the
expected run time of individual process chains [22,15] or even the dependencies
between process chains in the workflow graph [6,37] are conceivable. However,
in a distributed environment, it is very hard to predict the run time of a single
task without additional knowledge, so this topic remains for future work.

The fact that we use a database to store process chains has many benefits.
First, this out-of-core approach reduces the number of process chains that need
to be kept in memory at a time. This allows the scheduler to process hundreds
of thousands of process chains without any issue. Second, multiple scheduler
instances can access the database and work in parallel on different virtual ma-
chines. Due to this, the total time it takes to schedule all process chains of a
workflow can be reduced and the values presented in Section 7.2 become neg-
ligible compared to the whole workflow run. Lastly, since the database holds
the remaining process chains to execute, it essentially keeps the current state
of the overall workflow execution. This enables fault tolerance: if one scheduler
instance crashes, another one can take over. Our open-source implementation
even supports resuming workflows if all schedulers have crashed after a restart
of the whole cluster.

Nevertheless, the database can be considered a single point of failure. If
it becomes unavailable, workflow execution cannot continue. In practise, this
is, however, not a problem because as soon as it is up again, our scheduling
algorithm can proceed and no information will be lost.

There are still places where our system could be improved. At the moment,
our cloud manager creates only one virtual machine per capability set at a time.



22 M. Krämer

This could be parallelised in the future to further reduce the overall run time of
workflows. However, this requires a clever heuristic so that the cloud manager
does not create more virtual machines than actually necessary. This heuristic
should be based on the number of remaining process chains in the database for
a given capability set, which can change while the virtual machines are being
created. This optimisation remains for future work.

8 Conclusion

Distributed scientific workflow management systems running in the Cloud face
the challenges of capability-based scheduling, a dynamic environment, scalability,
and fault tolerance (see Section 1.1). In this paper, we presented a software
architecture and a scheduling algorithm addressing these challenges. Our work
contributes to the scientific community as the challenges have not been fully
addressed in literature yet.

The Steep Workflow Management System, which has been released under an
open-source licence, implements our approach. Steep is used in various projects.
One of them, for example, deals with the processing of large point clouds and
panorama images that have been acquired with a mobile mapping system in
urban environments. The data often covers whole cities, which makes the work-
flows particularly large with thousands of process chains. The point clouds are
processed by a service using artificial intelligence (AI) to classify points and to
detect façades, street surfaces, etc. Since this is a time-consuming task and the
workflows often take several days to execute, the scalability and fault tolerance
of Steep are fundamental in this project.

The AI service requires a GPU, which is a limited resource in the Cloud and
particularly expensive. The capability-based scheduling algorithm we proposed
in this paper helps in this respect by distributing workflow tasks to the correct
machines. As our system supports elasticity and a dynamic number of machines,
it can scale up and down on demand. It only creates GPU machines when needed
and releases them as soon as possible. In other words, in this project, our ap-
proach saves time and money.

There is a range of opportunities for future research. For example, the ap-
proach to transform workflow graphs to process chains introduced in Section 3
is implemented in an iterative way and allows very complex workflows to be
processed. It supports workflows without a priori design-time knowledge [33],
which means the system does not need to know the complete workflow structure
before the execution starts. As the number of instances of a process chain can
depend on the results of a preceding one, this property allows the system to
dynamically change the workflow structure during run time. This approach is
also suitable to execute workflows without a priori run-time knowledge, meaning
that the number of instances of a certain process chain may even change while
the process chain is running. This enables cycles and recursion. Details on this
will be the subject of a future publication on which we are currently working.



Scheduling of workflow actions based on required capabilities 23

References

1. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an
extensible system for design and execution of scientific workflows. In: Proceedings.
16th International Conference on Scientific and Statistical Database Management,
2004. pp. 423–424. IEEE (2004)

2. Apache Airflow: Apache Airflow Website. https://airflow.apache.org/ (2020), last
accessed: 2020-04-14

3. Argo Workflows: Argo Website. https://argoproj.github.io/ (2020), last accessed:
2020-10-21

4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
distinct elements in a data stream. In: Rolim, J.D.P., Vadhan, S. (eds.) Random-
ization and Approximation Techniques in Computer Science. pp. 1–10. Springer
Berlin Heidelberg (2002)

5. Berriman, G.B., Deelman, E., Good, J.C., Jacob, J.C., Katz, D.S., Kesselman, C.,
Laity, A.C., Prince, T.A., Singh, G., Su, M.H.: Montage: a grid-enabled engine
for delivering custom science-grade mosaics on demand. In: Optimizing Scientific
Return for Astronomy through Information Technologies. vol. 5493, pp. 221–233.
International Society for Optics and Photonics (2004)

6. Binato, S., Hery, W.J., Loewenstern, D.M., Resende, M.G.C.: A Grasp for Job
Shop Scheduling, pp. 59–79. Springer US (2002). https://doi.org/10.1007/978-1-
4615-1507-4 3

7. Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task
scheduling strategies for workflow-based applications in grids. In: Proceedings of
the IEEE International Symposium on Cluster Computing and the Grid (CCGrid).
pp. 759–767 (2005). https://doi.org/10.1109/CCGRID.2005.1558639

8. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache Flink: Stream and batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering 36(4), 28–38
(2015)

9. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for schedul-
ing parameter sweep applications in grid environments. In: Proceedings of
the 9th Heterogeneous Computing Workshop HCW. pp. 349–363 (2000).
https://doi.org/10.1109/HCW.2000.843757

10. Chircu, V.: Understanding the 8 fallacies of distributed systems. https://
dzone.com/articles/understanding-the-8-fallacies-of-distributed-syste (2018), last
accessed: 2020-02-18

11. Deelman, E., Peterka, T., Altintas, I., Carothers, C.D., van Dam, K.K., More-
land, K., Parashar, M., Ramakrishnan, L., Taufer, M., Vetter, J.: The future of
scientific workflows. The International Journal of High Performance Computing
Applications 32(1), 159–175 (2018)

12. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani,
R., Chen, W., Ferreira da Silva, R., Livny, M., Wenger, K.: Pegasus: a workflow
management system for science automation. Future Generation Computer Systems
46, 17–35 (2015). https://doi.org/10.1016/j.future.2014.10.008

13. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., Notredame,
C.: Nextflow enables reproducible computational workflows. Nature biotechnology
35(4), 316–319 (2017). https://doi.org/10.1038/nbt.3820

14. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

https://doi.org/10.1007/978-1-4615-1507-4_3
https://doi.org/10.1007/978-1-4615-1507-4_3
https://doi.org/10.1109/CCGRID.2005.1558639
https://doi.org/10.1109/HCW.2000.843757
https://dzone.com/articles/understanding-the-8-fallacies-of-distributed-syste
https://dzone.com/articles/understanding-the-8-fallacies-of-distributed-syste
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1038/nbt.3820


24 M. Krämer

15. Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hens-
gen, D.Z., Keith, E., Kidd, T., Kussow, M., Lima, J.D., Mirabile, F., Lantz, M.,
Rust, B., Siegel, H.J.: Scheduling resources in multi-user heterogeneous computing
environments with SmartNet. Calhoun: The NPS Institutional Archive (1998)

16. Gherega, A., Pupezescu, V.: Multi-agent resource allocation algorithm based on the
xsufferage heuristic for distributed systems. In: Proceedings of the 13th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing.
pp. 313–320 (2011). https://doi.org/10.1109/SYNASC.2011.37

17. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P.,
Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J.,
Nekrutenko, A.: Galaxy: a platform for interactive large-scale genome analysis.
Genome research 15(10), 1451–1455 (2005). https://doi.org/10.1101/gr.4086505

18. Graves, R., Jordan, T.H., Callaghan, S., Deelman, E., Field, E., Juve, G., Kessel-
man, C., Maechling, P., Mehta, G., Milner, K., Okaya, D., Small, P., Vahi, K.:
Cybershake: A physics-based seismic hazard model for southern california. Pure
and Applied Geophysics 168(3), 367–381 (2011). https://doi.org/10.1007/s00024-
010-0161-6

19. Hamad, S.A., Omara, F.A.: Genetic-based task scheduling algorithm in cloud com-
puting environment. International Journal of Advanced Computer Science and Ap-
plications 7(4), 550–556 (2016). https://doi.org/10.14569/IJACSA.2016.070471

20. Hemamalini, M.: Review on grid task scheduling in distributed heterogeneous en-
vironment. International Journal of Computer Applications 40(2), 24–30 (2012)

21. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn,
T.: Taverna: a tool for building and running workflows of services. Nucleic acids
research 34, W729–W732 (2006)

22. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent
tasks on nonidentical processors. Journal of the ACM 24(2), 280–289 (1977).
https://doi.org/10.1145/322003.322011

23. Johnson, D.S., Garey, M.R.: Computers and Intractability: A guide to the theory
of NP-completeness. WH Freeman (1979)

24. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct
elements problem. In: Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. pp. 41–52. PODS ’10, Association
for Computing Machinery (2010). https://doi.org/10.1145/1807085.1807094

25. Krämer, M.: A Microservice Architecture for the Processing of Large Geospa-
tial Data in the Cloud. Ph.D. thesis, Technische Universität Darmstadt (2018).
https://doi.org/10.13140/RG.2.2.30034.66248

26. Krämer, M.: Capability-based scheduling of scientific workflows in the cloud.
In: Proceedings of the 9th International Conference on Data Science, Tech-
nology, and Applications DATA. pp. 43–54. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0009805400430054

27. Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D.: Cloud task scheduling based on load
balancing ant colony optimization. In: Proceedings of the 6th Annual Chinagrid
Conference. pp. 3–9 (2011). https://doi.org/10.1109/ChinaGrid.2011.17

28. Maheswaran, M., Ali, S., Siegal, H.J., Hensgen, D., Freund, R.F.: Dynamic match-
ing and scheduling of a class of independent tasks onto heterogeneous computing
systems. In: Proceedings. Eighth Heterogeneous Computing Workshop (HCW’99).
pp. 30–44 (April 1999). https://doi.org/10.1109/HCW.1999.765094

29. Mell, P.M., Grance, T.: The NIST definition of cloud computing. Tech. rep., Na-
tional Institute of Standards & Technology, Gaithersburg, MD, USA (2011)

https://doi.org/10.1109/SYNASC.2011.37
https://doi.org/10.1101/gr.4086505
https://doi.org/10.1007/s00024-010-0161-6
https://doi.org/10.1007/s00024-010-0161-6
https://doi.org/10.14569/IJACSA.2016.070471
https://doi.org/10.1145/322003.322011
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.13140/RG.2.2.30034.66248
https://doi.org/10.5220/0009805400430054
https://doi.org/10.1109/ChinaGrid.2011.17
https://doi.org/10.1109/HCW.1999.765094


Scheduling of workflow actions based on required capabilities 25

30. Nayak, B., Padhi, S.K.: Mapping of independent tasks in the cloud computing en-
vironment. International Journal of Advanced Computer Science and Applications
10(8) (2019)

31. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004).
https://doi.org/10.1093/bioinformatics/bth361

32. Page, A.J., Naughton, T.J.: Dynamic task scheduling using genetic algo-
rithms for heterogeneous distributed computing. In: Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium (2005).
https://doi.org/10.1109/IPDPS.2005.184

33. Russell, N., van van der Aalst, W.M., ter Hofstede, A.H.M.: Workflow Patterns:
The Definitive Guide. MIT Press (2016)

34. Singh, S., Chana, I.: A survey on resource scheduling in cloud comput-
ing: Issues and challenges. Journal of Grid Computing 14, 217–264 (2016).
https://doi.org/10.1007/s10723-015-9359-2

35. Tawfeek, M.A., El-Sisi, A., Keshk, A.E., Torkey, F.A.: Cloud task schedul-
ing based on ant colony optimization. In: Proceedings of the 8th Interna-
tional Conference on Computer Engineering Systems (ICCES). pp. 64–69 (2013).
https://doi.org/10.1109/ICCES.2013.6707172

36. Thennarasu, S., Selvam, M., Srihari, K.: A new whale optimizer for workflow
scheduling in cloud computing environment. Journal of Ambient Intelligence and
Humanized Computing (2020). https://doi.org/10.1007/s12652-020-01678-9

37. Topcuoglu, H., Hariri, S., Min-You Wu: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002). https://doi.org/10.1109/71.993206

38. Ullman, J.: NP-complete scheduling problems. Journal of Computer and System
Sciences 10(3), 384–393 (1975). https://doi.org/https://doi.org/10.1016/S0022-
0000(75)80008-0

39. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing. USENIX Association (2010)

https://doi.org/10.1093/bioinformatics/bth361
https://doi.org/10.1109/IPDPS.2005.184
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1109/ICCES.2013.6707172
https://doi.org/10.1007/s12652-020-01678-9
https://doi.org/10.1109/71.993206
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80008-0

	Efficient scheduling of scientific workflow actions in the Cloud based on required capabilities



