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Abstract

We present an algorithm and a software architecture for a cloud-based system that executes cyclic scientific
workflows whose structure may change during run time. Existing approaches either rely on workflow definitions
based on directed acyclic graphs (DAGs) or require workarounds to implement cyclic structures. In contrast, our
system supports cycles natively, avoids workarounds, and as such reduces the complexity of workflow modelling and
maintenance. Our algorithm traverses workflow graphs and transforms them iteratively into linear sequences of
executable actions. We call these sequences process chains. Our software architecture distributes the process chains
to multiple compute nodes in the cloud and oversees their execution. We evaluate our approach by applying it to
two practical use cases from the domains of astronomy and engineering. We also compare it with two existing
workflow management systems. The evaluation demonstrates that our algorithm is able to execute dynamically
changing workflows with cycles and that design and maintenance of complex workflows is easier than with existing
solutions. It also shows that our software architecture can run process chains on multiple compute nodes in parallel to
significantly speed up the workflow execution. An implementation of our algorithm and the software architecture is
available with the Steep Workflow Management System that we released under an open-source license. The
resources for the first practical use case are also available as open source for reproduction.
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Introduction
Task automation has a long history in computer science.
With the continuing growth in global data, the need for
automated data processing becomes more and more evi-
dent. This applies to areas such as Bioinformatics [1],
Geology [2], and Geoinformatics [3, 4] but also Astron-
omy [5] (see also “Use case 1: computing astronomical
image mosaics” section) and Engineering (“Use case 2:
shape optimisation via structural analysis” section). Appli-
cations in these areas often employ a number of process-
ing steps (hereafter referred to as actions) that need to be
run in a specific order to transform a set of input data
into a desired output. A scientific workflow is a model that
describes such a transformation. It is typically defined by a
scientist using a directed acyclic graph (DAG). This graph
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specifies the dependencies between the individual actions
and how the data flows from one to another in order to
produce the desired outcome.
Processing big data sets with complex workflows often

requires an amount of resources (in terms of CPU power,
available main memory, or hard drive space) that exceeds
the capacities of local workstations. Distributed scien-
tific workflow management systems (e.g. Pegasus [6] and
Apache Airflow [7]) as well as other solutions for big
data processing such as Apache Spark [8] and Apache
Flink [9] therefore try to leverage the power of high-
performance computing (HPC) clusters and grids, or even
more dynamic environments such as the cloud. They
traverse the workflow definition and execute individual
actions in parallel on distributed compute nodes. This
enables scalability [10, 11] and elasticity [12], which allow
complex workflows to process large amounts of data in a
reasonable time.
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Many existing solutions require the workflow designer
to model a DAG in its entirety including all actions as well
as their dependencies in advance. However, there are use
cases that require a more dynamic approach where the
number of instances of a given action is unknown at work-
flow design time or even during run time—for example,
if the results of an action should be processed in paral-
lel by a subsequent one but the number of results is not
known until the action has actually been executed. In this
case, the structure of the workflow has to be adjusted
during run time. There are even use cases that involve
cycles, iterations, or recursion in the workflow, which can-
not be fully modelled with a directed acyclic graph in
advance.
Although this issue can be solved in some existing

solutions through workarounds or special language con-
structs, the underlying data models and programming
paradigms are often complex and hard to learn and main-
tain. In summary, this makes design and maintenance of
complex dynamic workflows unnecessarily lengthy and
tedious (as we show in “Comparison with Pegasus” and
“Comparison with Argo” sections).

Goals and contributions
Figure 1a shows a DAG that describes a simple work-
flow. The input data is first processed by action A. This
action produces exactly two outputs, which are in turn

processed by two instances of action B. The outputs of
these instances are then joined by action C to produce the
final result.
Russell et al. have identified a pattern for workflows

like this, which they call “Multiple instances with a priori
design-time knowledge” [13] meaning that the structure of
the workflow can be fully modelled before it is executed. A
more complex pattern is “Multiple instances with a priori
run-time knowledge” shown in Fig. 1b. In this workflow,
the number of outputs produced by action A is variable
and the number of instances of action B is not known at
design time. One reason for this might be that the num-
ber of outputs depends on the input—for example, if you
want to split a file line by line but do not know how many
lines it contains in advance. The number of instances of
action B is only known after the execution of action A is
completed.
The problem becomes even more complex if the work-

flow structure changes during its execution. This might
be the case if the workflow graph is not acyclic (i.e.
if it is not a DAG) but contains loops or recursion.
Russell et al. call this “Multiple instances without a pri-
ori run-time knowledge”. Figure 1c shows an example,
where the data flow is determined by the output of action
C. The workflow either finishes or the output of C is
passed back to A, in which case the workflow starts
again at the beginning. The number of instances of B

Fig. 1 Examples of workflow graphs. Petri Net notation according to van der Aalst & van Hee [14] (see also “Workflow model” section)
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but also of A and C depends on how many times the
workflow repeats. Note that the number of repetitions
and thus the final structure of the workflow is unknown,
even during run time, until C decides to finish the
processing.
As stated above, many existing solutions require the

workflow designers to use workarounds to implement
Multiple instances without a priori run-time knowledge,
if it is supported at all (as shown in “Related work”,
“Comparison with Pegasus”, and “Comparison with Argo”
sections). It would be beneficial for the designers if the
workflow management system would support cycles in
workflow graphs and handle Multiple instances without
a priori run-time knowledge natively. This would make
workflow definitions shorter, so that the designers could
focus on the actual task, i.e. the workflow design, and not
on technical implementation details.
The two research questions of this paper are therefore

as follows:

1) Is it possible to create a distributed scientific
workflow management system that natively supports
cyclic scientific workflows involving multiple instances
of workflow actions without a priori run-time
knowledge?

2) Can this system be designed in a way so that the
native support for cyclic workflows makes workflow
definition and maintenance less complex than with
existing solutions?

To answer these questions, we first present an algo-
rithm that splits workflow graphs into smaller process
chains suitable for being executed in parallel in a dis-
tributed environment. We also present a software archi-
tecture for a scientific workflow management system and
show how it can be deployed to the cloud. The system uses
a workflowmodel that includes recursive for-each actions.
These actions can be dynamically unfolded by our algo-
rithm during run time to support an arbitrary number of
iterations.
We also present results from evaluating our algorithm

and software architecture by implementing two real-
world use cases from Astronomy and Engineering. We
focus on the cloud but our approach can also be applied
to clusters or grids.
Finally, we compare our system with two existing

ones to demonstrate that our approach actually sup-
ports cyclic workflows natively and that it does not
require workarounds and therefore reduces the mainte-
nance efforts for workflow designers.
An implementation of our algorithm and software

architecture is available with the Steep Workflow Man-
agement System, which we have released under an open-
source license [15].

Structure of the paper
The remainder of this paper is structured as follows.
First, we discuss related work and specifically compare
our approach with existing scientific workflow manage-
ment systems (“Related work” section).We then introduce
our workflow model and the graphical notation we use to
specify workflow graphs (“Workflow model” section).
In the main part of the paper, we present our algo-

rithm to transform cyclic workflow graphs into exe-
cutable units called process chains (“Workflow algorithm”
section). We also describe the individual components of
our software architecture and how they work together
to execute cyclic workflows in a distributed environment
(“Software architecture” section).
After this, we present the results from evaluating our

approach and our open-source implementation by apply-
ing it to two practical use cases from the domains of
astronomy and engineering and by comparing it to two
existing systems (“Evaluation” section). We finish the
paper with conclusions and future research opportunities
(“Conclusions” section).

Related work
The topic of scientific workflow management is of con-
stant and ongoing interest in the research community.
There are many open challenges and research questions
[16] that have led to a large number of existing implemen-
tations. In this section, we focus on themost popular ones,
although there are many others still noteworthy such as
Galaxy [17], Luigi [18], or Hyperflow [19]. Also, we only
discuss the aspect of cycles resulting in “Multiple instances
without a priori run-time knowledge” and do not compare
other features of the existing implementations.
The main goal of our paper is to support cyclic work-

flows in a distributed environment natively in order to
make workflow definitions shorter and easier to maintain.
Existing solutions require workarounds, have limitations,
or are not workflow management systems. This section
describes the characteristics of each system. The differ-
ences are summarised in Table 1.
The first workflow management system that requires

workarounds for cyclic workflows is Pegasus [6]. It is well
known for executions in distributed environments and has
been used in a wide range of applications. However, Pega-
sus requires the users to specify the entire workflow with
a priori design-time knowledge. The system does not have
support for a dynamic number of iterations as we propose
it in this paper. Instead, users need to apply a workaround
and generate a sub-workflow whose structure depends on
the results of an action in the parent workflow. For exam-
ple, if they wish to apply an action to all lines in a file,
they first have to create a parent workflow that counts the
lines. Then, they need to plan a new DAG that executes
the action as many times as there are lines. This approach
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Table 1 Differences between existing workflow management systems

Name “Multiple instances without a priori run-time knowledge” Distributed Workflow manage-
ment system?

Pegasus Requires sub-workflows Yes Yes

Airflow Requires sub-workflows Yes Yes

Swift/T Limits parallelism Yes Mostly

Chiron Supported, but no published version for user-guided loops Yes Yes

Argo No intermediate files Yes Yes

No loop termination based on file existence

Taverna Supported No Yes

Kepler Supported No Yes

Hadoop Supported Yes No

Spark Supported Yes No

enables workflows with “Multiple instances with a priori
run-time knowledge”. “Multiple instances without a pri-
ori run-time knowledge” are also possible by generating a
sub-workflow that in turn generates sub-sub-workflows
and so on. In contrast to our approach, this workaround
is rather tedious to implement and makes maintenance of
large workflows hard (see also “Comparison with Pegasus”
and “Comparison with Argo” sections).
The second workflowmanagement system that requires

workarounds is Apache Airflow [7]. It is has a powerful
scheduling interface to support recurring tasks and allows
running jobs to be monitored in a web front-end. Similar
to Pegasus, workflow modelling in Airflow is based on a
DAG. This restricts Airflow in the same way as discussed
for Pegasus. The dynamic changes in the workflow struc-
ture resulting from cycles can not be realised natively, but
require the same workaround using sub-workflows.
Swift/T [20] is more likely to be considered a pro-

gramming language than a workflowmanagement system.
Besides Swift/T, there is also Swift/K [21], which uses
Karajan [22] as its underlying workflow engine. Compared
to Pegasus and Airflow, Swift/T evaluates the workflow
during run time. It is not modelled as a DAG in advance.
This enables it to support “Multiple instances with a priori
run-time knowledge” natively. “Multiple instances without
a priori run-time knowledge” can be designed with lim-
itations: Swift/T has for loops that allow the number of
iterations to be modified during run time but do not sup-
port distributed execution. For this, Swift/T provides the
foreach statement. Nesting foreach inside for combines
the benefits of both constructs, but the degree of paral-
lelism is limited. Before the next iteration of the outer for
loop can start, all inner iterations of the foreach have to be
completed. The for-each actions in our approach support
both dynamic number of iterations and parallel execution.
Chiron [23] and the cloud middleware SciCumulus [24]

support “Multiple instances without a priori run-time

knowledge”. The system uses a data-centric approach [25]
for processing. All information are stored in a workflow
database and thus can be changed during run time. In [26],
this feature is used to reduce the data while it is already
processed. However, instead of removing, data can also
be added. This leads to new instances without a priori
run-time knowledge. If needed, execution can be adapted
through so called knops [27] and dynamic loops [28].
Knops enable the user to change parameters during run
time. For example, this is required to manually stop an
optimization program when the values are good enough.
Dynamic loops are even more powerful. They allow the
user to interact with the workflow and change the data
and control flow during run time. However, the version of
Chiron with dynamic loops was never released. It exists
as an unpublished development version, but is not avail-
able for end users1. Our approach is production-ready and
published on GitHub [15].
Argo is a workflowmanagement system based onKuber-

netes. The workflow is defined as a Kubernetes Custom
Resource Definition (CRD) and uses containers for the
actions. If one action outputs a JSON array, Argo can iter-
ate over its entries. This enables “Multiple instances with
a priori run-time knowledge”. “Multiple instances with-
out a priori run-time knowledge” can be realised when
combining loops with recursion. In Argo, an action can
recursively call another action based on defined condi-
tions. This can be used to feed back the results of an
action into a loop. However, Argo overwrites the inter-
mediate results of one iteration when the next iteration
starts. The developer has to introduce and update a cus-
tom counter variable to write the intermediate results to
different files. Additionally, the termination of the recur-
sion can not be decided based on the existence of results.

1Personal communication with the corresponding author of [28], Marta
Mattoso, 7 October 2020
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The developer has to write a custom action to check if
there are results or use a read error as a termination
condition. For more information, see “Comparison with
argo” section.
Taverna [29] uses a GUI-based modelling approach.

It has a strong focus on reusability of components
and is widely used in bioinformatics. Like Pegasus and
Airflow, a workflow is modelled as a DAG. However,
Taverna extends this model by loops. The developer is
able to define a sub-workflow where the input param-
eters are a subset of the output parameters. A boolean
expression defines whether the current output values
should be used as input values for a new iteration or
the loop ends. Parallelism is realized by using a list of
input values for an action that requires a single value.
In this way, “Multiple instances without a priori run-
time knowledge” can be modelled more easily because
sub-sub-workflows are no longer needed. However,
Taverna has a drawback: it is not a distributed system. It
runs on a single machine and can only connect to exter-
nal WSDL (Web Services Description Language) services.
Distribution requires third-party components such as
Tavaxy [30].
Kepler [31] has a user interface that allows users with

no or little background in computer science to build
their own workflow. A workflow in Kepler consists of
actors. An actor can be a script or an expression to
decide whether a loop should be finished or not. This
enables “Multiple instances without a priori run-time
knowledge”. The execution of the actors is controlled by
directors. Kepler has many integrated directors for differ-
ent use cases. For a parallel execution, the PN director
can be used. It encapsulates each actor in its own thread,
enabling several actors to run simultaneously without
blocking each other. Compared to other workflow man-
agement systems, distributed execution is not as easy to
achieve. Like Taverna, Kepler can execute WSDL ser-
vices and access data in a grid. Additionally, services can
be invoked via REST calls, Soaplab or Opal. However,
it is not possible to distribute actors to multiple cloud
machines directly. Nevertheless, there are approaches
to use Amazon EC2 instances and access them via
SSH [32].
Besides these frameworks, there are programmingmod-

els like MapReduce [33] and corresponding implemen-
tations such as Hadoop [34] and Apache Spark [8].
Wang et al. have combined Kepler with Hadoop to
allow it to make use of distributed computing [35]. Fei
et al. presented an approach to combine the strengths
of MapReduce with a scientific workflow management
system [36].
Especially for long running scientific tasks, Spark scales

well [37] but requires a workflow definition using its
own API. This problem was solved by Gaspar et al. who

presented an approach to run existing workflows inside a
Spark cluster [38]. They are able to use the optimisations
in Spark regarding data locality, while their workflows
do not need to be rewritten. However, scientists with
no knowledge in distributed computing may be unable
to use these alternative programming models correctly.
A workflow management system can provide benefits to
them in terms of usability, scalability, and flexibility [3].
In this paper, we present an algorithm and a software
architecture for such a scientific workflow management
system.

Workflowmodel
This section gives a brief overview of the workflow model
in our system and the notation we use to present work-
flow graphs in this paper. Compared to existing workflow
definition languages such as YAWL [39] or CWL [40], our
workflow model is lightweight. CWL also does not sup-
port loops or recursion [41]. Our model resembles the
workflow description language WDL [42] but inputs and
outputs are not strongly typed. Also, instead of scatter or
gather blocks to express parallelisation and joins, there are
only two, very generic types of actions.
Figure 2 shows the UML class diagram. A workflow

has a human-readable name, a list of variables, and a
list of actions. Each variable is a key-value pair, whereas
the key is an identifier and the value can be a primitive
(boolean, number, string), a list of primitives, or undefined
if it is unknown at design time. Variables with unde-
fined values are typically used to create links between
the outputs and inputs of actions. Initialized variables are
immutable.
The two types of actions in our model are execute

actions and for-each actions. Execute actions refer to an
externally defined processing service that should run in
the cloud. They specify inputs and outputs as well as
generic parameters for the service. For-each actions have
sub-actions that should be applied to a list of input data.
Results are collected in an output list. Each for-each action
has an enumerator, which is a variable the sub-actions
can use to refer to an item in the input list. The prop-
erty yieldToOutput points to an output of a sub-action
that should be collected in the output list of the for-each
action. yieldToInput, on the other hand, allows the work-
flow designer to implement recursion by feeding the out-
put of a sub-action back into the input list of the for-each
action.
The listing shown in Fig. 3 shows a simple example

workflow in YAML notation. It consists of a for-each
action that iterates over all files in an input directory
data_directory. For each file, the service process_file is
called. When the loop is complete, all outputs are pro-
cessed by the service aggregate and a final_result file is
created.
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Fig. 2 UML class diagram of the workflow model

More information about the data model including
examples can be found in the documentation of our open-
source implementation [15].
In order to graphically express scientific workflows, we

use Petri Nets [43–46] with the extensions by van der
Aalst & van Hee who define special symbols for com-
mon constructions [14]. The following table lists the main
symbols and how we use them in this paper:

A

AND-split
An action that produces multiple results at the
same time. It will write to all defined outputs.

A

AND-join
An action that has multiple inputs. The action
can only be executed if all inputs are available.

A

OR-split
An action that has several defined outputs but
produces exactly one result. The action decides
itself to which output it will write the result.

A

AND/OR-split
An action that will write a result to one or more
of its defined outputs at the same time.

In order to express loops and multiple instances more
concisely than in the examples in Fig. 1, we specify an
additional symbol. It consists of a box with a circular

arrow in the upper-left corner. Inside this box is a nested
Petri Net with the transitions that should be repeated or,
more precisely, parallelised. In our case, the symbol repre-
sents a for-each action with the nested Petri Net being the
sub-actions.

For-each action
A for-each action with a nested Petri Net. The
action will apply the sub-actions to all input
values (typically in parallel). The results will be
collected in the output of the for-each action.

Figure 4 shows some examples. With the new symbol,
we can represent all elements of our workflow model:
a place (circle) corresponds to a variable, a transition
(rectangle) is an execute action, and the new symbol rep-
resents a for-each action. Recursion with yieldToInput
can be modelled by combining the new symbol with anB
OR-split.
Note that, in order to maintain the semantics of Petri

Nets, we need to add artificial, no-operation transitions
represented by black lines. These transitions do not
appear as actions in our workflow. As will become clear
in the following sections, they can be seen as synchro-
nization points where our algorithm splits the workflow
or where it processes the results of the sub-actions of a
for-each action.
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Fig. 3 Simple example workflow model in YAML notation

Workflow algorithm
The main purpose of our algorithm is to split a (possibly
cyclic) workflow graph into smaller pieces, which we call
process chains. A process chain is a linear list of actions
(including all values of input and output parameters) that
should be executed on the cloud nodes.
Our algorithm is meant to be used iteratively: we first

call it to generate process chains, then execute them, and
finally feed the results back into the algorithm to create
more process chains (see “Software architecture” section
for details). During each iteration, the algorithm removes
the actions it was able to convert to process chains from
the workflow. This procedure repeats until all actions in
the workflow have been consumed or until the algorithm
returns no more process chains.
Our algorithm consists of two functions that are called

sequentially (see pseudo-code in Fig. 5): unrollForEachAc-
tions and generateProcessChains. For the sake of clarity,
we first describe generateProcessChains, which splits a
workflow into smaller pieces, and then unrollForEachAc-

tions, which implements the main contribution of our
paper, namely cyclic workflows.

Generating process chains
Figure 6 shows the pseudo-code of generateProcess-
Chains. The body of the function consists of a for loop
that iterates over all execute actions in the workflow. For
each of them, it checks if all inputs are available (either
because they were statically defined in the workflow or
because they have been generated in an earlier iteration of
the workflow execution). If they are available, the action is
ready to be executed. In the inner while loop, the function
then tries to create a linear chain of subsequent actions
that are also ready to be executed. An action B is con-
sidered subsequent to an action A if all inputs of B are
outputs of A. The inner while loop stops if it encounters
a junction in the workflow graph (a split or a join) or if it
runs out of execute actions.
The function removes actions ready to be executed from

the workflow. It also keeps track of actions that it visited
but considered not ready to be executed in order to avoid
visiting them again. However, the function does not mark
an action as visited if it is the first one in a chain because
it could still be an action that is subsequent to another
one. The function collects all created process chains and
returns them in the end.

Example 1
Figure 7 depicts how generateProcessChains splits an
example workflow graph into process chains. The input
of action A is available from the beginning because it has
been statically defined in a workflow variable. Action A is
therefore ready to be executed, and the function creates a
process chain containing only this action in the first itera-
tion. It then removes A from the workflow. In the second
iteration, when the outputs of A have been generated and
therefore the inputs of B and D have become available, the
function creates two process chains: one containing the
consecutive actions B and C, and another one containing
D. In the third iteration, the inputs of E have also become
available and the algorithm creates the final process chain.

Unrolling for-each actions
As generateProcessChains only handles execute actions,
we need a way to convert for-each actions to execute
actions. This process is called loop unrolling.
unrollForEachActions (see pseudo-code in Fig. 8) iter-

ates over all for-each actions in the workflow. For this,
it uses a queue to be able to add nested for-each actions
during the process and to unroll as many levels of nested
for-each actions as possible in one call.
The function first checks if all inputs of a given for-each

action are available2. If this is the case, the action is ready
to be unrolled. Unrolling works as follows: For each input,
2Note that the condition also evaluates to true if the list is empty.
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Fig. 4 Examples of Petri Nets based on our workflow model

the function clones all sub-actions and injects the input
into the cloned actions. Injecting means that it reassigns
the input variables, which point to the enumerator of the
for-each action, to the current input. The function then
adds the cloned actions to the workflow. Cloned for-each
actions are appended to the queue so the function can
unroll them too.
The function also iterates over all cloned actions in the

workflow and collects all outputs that need to be fed back
into the input of the for-each action via yieldToInput in
a set of recursive inputs. There are three cases when this
set can be empty: the property yieldToInput was not set,
all cloned actions have been executed, or all inputs of
the for-each action have been consumed. In either case,
the for-each action can be removed from the workflow.
Otherwise, the function needs to keep it so unrolling can
continue in the next iteration of the algorithm.

Fig. 5 The main function of our algorithm

Example 2: ordinary for-each action
Figure 9 shows an example of how the algorithm splits a
workflow graph containing a for-each action. In the begin-
ning, action A is the only one that is ready to be executed.
In the first iteration, the algorithm therefore creates one
process chain containing A. It does not add other actions
because the one subsequent to A is a for-each action
(as described earlier, the function generateProcessChains

Fig. 6 The function generateProcessChains tries to find linear lists of
consecutive actions that are ready to be executed
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Fig. 7 Process chain generation. Example of how our algorithm splits a workflow graph into four process chains (marked with dashed boxes) in
three iterations

only handles execute actions). If we assume that executing
this process chain results in three outputs, the func-
tion unrollForEachActions then clones the sub-actions of
the for-each action three times and adds the clones to
the workflow. It also removes the for-each action. gen-
erateProcessChains traverses all execute actions in the
workflow (including the new ones) and generates three
process chains. These process chains can then be executed
in the cloud. After that, the outputs of all instances of
action B are available, and, in the third iteration, the algo-
rithm can create a new process chain containing action C.
Note that C has only one input, namely a list of the outputs
created by all instances of B.

Fig. 8 The function unrollForEachActions clones sub-actions as many
times as there are iterations and then removes the corresponding
for-each action

Example 3: recursive for-each action
In the previous example, we described how our algorithm
splits a workflow graph containing a for-each action with-
out cycles. We now present an example workflow with a
recursive for-each action.
Figure 10 shows the original graph and the indi-

vidual iterations. The workflow consists of a for-each
action with exactly one sub-action C that has two out-
puts. The left output is connected to the output of
the for-each action via yieldToOutput. The right out-
put is connected to the input of the for-each action via
yieldToInput.
In the first iteration, given that the input of the for-each

action is a list of two items, the function unrollForEachAc-
tions clones the sub-action two times and distributes the
input items. generateProcessChains then creates a new
process chain for each clone and removes the clones from
the workflow. Note that the for-each action is not removed
yet because the new process chains might produce more
items to iterate over.
The two process chains are then executed and their

results are passed back to the algorithm. Let us assume
that action C1 produced an item in its left and C2 in its
right output. The output of C1 is collected in the output
of the for-each action while the output of C2 is fed back
into the input of the for-each action. In the second itera-
tion, the algorithm then clones the sub-action only once
and also creates only one process chain (containing action
C3). In the third iteration, assuming C3 has produced an
item in its left output, the algorithm removes the for-each
action because there are no more inputs to process. The
workflow is now empty and no process chains are cre-
ated. The final output of the for-each action is a list of two
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Fig. 9 Unrolling a for-each action. Example of how our algorithm splits a workflow graph with a for-each action into process chains (marked with
dashed boxes) if action A produces three outputs

items: the output produced by C1 after the first iteration
and that of C3 after the second iteration.
Note that the for-each action in this example con-

tains only one sub-action. Nevertheless, our algorithm
supports both recursive for-each actions with multiple
sub-actions as well as nested sub-actions as shown in the
example workflow in Fig. 4c (see our evaluation, in par-
ticular the use case in “Use case 2: shape optimisation
via structural analysis” section). It further supports nested
for-each actions with an arbitrary number of levels. For
the sake of brevity, we do not include an example for
such a complex workflow here. The image would be sev-
eral pages long. The general process, however, is just a
combination of examples 1, 2, and 3. It requires inter-
action between both unrollForEachActions and gener-
ateProcessChains. We leave the example as an exercise to
the reader.

Software architecture
In this section, we describe the main components of the
software architecture of our open-source workflow man-
agement system where we implemented our algorithm.
The components are shown in Fig. 11. The Controller
manages the workflow execution. It keeps the work-
flow and any generated process chains in a database. At
the beginning of the workflow execution or when pro-
cess chain results are available, the Controller calls our
algorithm to generate new process chains. In parallel,
another component called the Scheduler regularly polls
the database, assigns any new process chains to compute
nodes in the cloud and then oversees their execution.
The Scheduler writes process chain results back to the
database.
The purpose of the database is twofold. First, it is

an asynchronous communication channel between the

Fig. 10 Unrolling a recursive for-each action
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Fig. 11 The main components of our software architecture

Controller and the Scheduler. Second, it enables fault tol-
erance: If the workflow management system crashes, it
can resume workflow execution on restart and does not
have to repeat the whole workflow. In the worst case, it
only needs to run those process chains again that were
currently being executed when the system crashed.
In the following, we describe the behaviour of the

Controller and the Scheduler during workflow execution
in detail.

Controller
Figure 12 shows the control flow inside the Controller
while it executes a single workflow. When the execution
is started, the component first calls our algorithm to gen-
erate an initial set of process chains. If the algorithm
actually has created process chains (i.e. if the workflow
is valid and not empty), the Controller registers them in
theDatabase. At this point, the Scheduler starts executing
the registered process chains (see “Scheduler” section).
The Controller starts a periodic job to look for process
chain results in the database. In case of an error, it aborts
the workflow execution. Otherwise, it calls our algorithm
again to generate more process chains. The whole process
repeats until the algorithm does not producemore process
chains.
Note that our algorithm may return an empty set of

process chains even though the workflow still contains
actions. This can happen if the workflow is invalid and
there are actions for which there are no inputs—which
means the actions are never ready to be executed. If
this case is detected at the end of a workflow execution,
our implementation marks the workflow as ‘failed’ in the
database.

Fig. 12 The control flow in the Controller during workflow execution

Scheduler
The Scheduler is responsible for overseeing the execution
of process chains in the cloud. Figure 13 shows its internal
control flow. Basically, the Scheduler works in an infinite
loop where it iterates over all new and running process
chains currently registered in the database. For each pro-
cess chain, the control flow can take either of the following
two paths:

• If the process chain is new, the Scheduler selects a
compute node and then starts the execution of the
process chain on this node. If no node is available
(e.g. because all nodes are currently busy), the
Scheduler just continues with the next process chain.

• If the process chain is currently registered as
‘running’ in the database, the Scheduler checks the
actual status on the compute node. If the process
chain has finished, it registers the results in the
database and then continues with the next one. At
this point, the Controller can pick up the results and
run our algorithm again.

Evaluation
As described earlier, we implemented our algorithm in
a workflow management system called Steep, which we
released under an open-source license [15]. In this section,
we evaluate our approach by applying it to two real-world
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Fig. 13 The main control flow in the scheduler

workflows. We also compare it with the workflow man-
agement systems Pegasus (“Comparison with Pegasus”
section) and Argo (“Comparison with Argo” section) to
further differentiate our approach from existing ones.
Our algorithm, the controller, and the scheduler are

implemented in Kotlin using Eclipse Vert.x [47], a tool-
kit for building reactive applications on the Java Virtual
Machine (JVM). With Vert.x, it is possible to develop
distributed applications consisting of multiple instances
running on different virtual machines in the cloud and
communicating with each other through an event bus.
Steep supports multiple database back-ends. For this
evaluation, we chose MongoDB [48] because it is fast and
lightweight and can be easily deployed in the cloud. We
stored the input data as well as intermediate and final
results of the workflows in the distributed file system
Gluster [49].
Figure 14 shows a deployment template for the different

environments we ran our workflows in. The environments
differed only in the number of compute nodes, which is
indicated by the three dots. We put the binaries of our
workflow management system into a Docker image and
deployed it to the compute nodes. Note that this means
that on every compute node, there were a controller and a
scheduler. This allowed us to not only scale the processing
services but also the workflow management system itself
by increasing the number of compute nodes.
The components shared persistent data in MongoDB,

which ran on a separate virtual machine.We also deployed
an NGINX proxy running on a gateway machine with a
public IP address. This allowed us to start workflows and
to query progress from our workstation. We mounted the

Gluster file system to all compute nodes as well as the
gateway. This enabled all processing services to access the
same data. It also allowed us to upload input data to the
cloud as well as to fetch workflow results through the
gateway.
We created the virtual machines, the block devices,

and a virtual private network in the Amazon Web Ser-
vices (AWS) cloud using Terraform [50]. After this, we
deployed our workflow management system, MongoDB,
and Gluster using Ansible [51]. Terraform and Ansible are
automation tools that allowed us to express the infrastruc-
ture and the deployment as code and, in consequence, to
quickly reset the environment between workflow runs and
to easily change the number of compute instances.
Table 2 shows the individual AWS instance types we

used for our virtual machines. For the Gluster file system
we created block devices with a capacity of 150 GB each
and attached them to the compute nodes as secondary
volumes. We configured a replication factor of 2, so the
total size of the distributed file system was 150 GB × n/2
with n being the number of compute nodes. Our operating
system was Ubuntu 18.04 LTS.

Use case 1: computing astronomical imagemosaics
The first workflow we executed is Montage. It is a well-
known workflow that is often used in literature to evaluate
distributed scientific workflow management systems. Its
main purpose is to create a mosaic of images taken by tele-
scopes from professional astronomical surveys such as the
Two Micron All Sky Survey (2MASS) [52]. These images
need to be pre-processed before they can be merged into
a larger one.
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Fig. 14 Deployment of our workflow management system Steep in the AWS cloud

Figure 15 shows the workflow for one colour band. The
workflowmakes use of processing services from theMon-
tage toolkit [53]. It requires a set of input images and a
header template. Both can be created with the toolkit (see
below). At the beginning of the workflow, the images are
reprojected to the scale defined in the header template
(processing servicemProject). After that, new metadata is
generated with mImgtbl. Based on this, mOverlaps tries
to identify overlapping image pairs. For each image pair,
the workflow calls mDiffFit, which calculates the image
difference.
The result is then processed by a service called joinDiff-

FitResults. Note that this service is not part of theMontage
toolkit. It is a custom, very lightweight service we created.
Its sole purpose is to generate the required input param-
eters for the subsequent service mConcatFit. Other Mon-
tage workflow definitions from literature do not include
such a service, but they also do not include mOverlaps

Table 2 Used AWS instance types

Node Instance type vCPUs RAM System disk

Compute node(s) t2.xlarge 4 16 GB 10 GB

MongoDB t2.large 2 8 GB 50 GB

Gateway t2.small 1 2 GB 10 GB

(e.g. [54–56],). Since the result of mOverlaps determines
the number of instances of mDiffFit, existing works need
to run mOverlaps prior to the actual workflow execution
and therefore model the workflow with a priori design-
time knowledge. We show that, with our approach, we can
movemOverlaps into the workflow and achieve “Multiple
instances with a priori run-time knowledge” instead. This
allows us to use the same workflow definition for multiple
input data sets, while existing works need to create a new
DAG for each input data set (e.g. [57]).
mConcatFit merges the results of all instances of mDiff-

Fit into one file. This file is then used by mBgModel to
determine a set of corrections to apply to each image.
The next service mBackground uses these corrections to
remove the background from each of the input images.
After this, new metadata is generated with mImgtbl and
the individual images are merged to a mosaic withmAdd.
Finally, the result is resized withmShrink and converted to
a JPEG image withmViewer.
Before we could test our implementation with this

workflow, we needed to find a set of input images and
create a header template. The Montage toolkit contains
a command called mHdr for the header template, and
another one called mArchiveExec that can be used to
download imagery from different surveys. We opted for
2MASS because the provided images are public domain
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Fig. 15 The Montage workflow for one frequency band
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and cover the whole sky. We focussed on the Orion
Nebula and created two data sets (A and B), which are
described in Table 3. Note that the second data set over-
laps with the first one, but its centre lies north of the
Orion Nebula and the covered area is smaller. Also note
that 2MASS provides three colour bands J, H, and K
with different wavelengths. Since the workflow shown
in Fig. 15 only covers one band, we copied the whole
definition two more times and merged the three colour
bands at the end of the workflow with mViewer, which
is able to take three input channels for red, green, and
blue.
We then created 4 compute nodes in the AWS cloud and

ran the workflow two times, once for each input data set.
Since we automated the deployment with Terraform and
Ansible, we were able to reset the environment after each
workflow run in order to establish similar conditions. In
order to be able to validate that there is a speed-up when
parallelising the workflow execution, we also ran the two
tests with only 1 compute node. The results of all tests are
shown in Table 4.
The parallelised runs are about three times faster than

the non-parallelised ones, although we have 4 compute
nodes instead of 1. This is primarily caused by the over-
head of moving the large input data as well as intermediate
results between the nodes but also by the fact that pro-
cessing services such as mBgModel and mAdd alone take
the majority of the run time (1 h each) and can only be
parallelised on the level of colour bands, which means a
maximum of three parallel instances.
Figure 16 shows the final images for the two input data

sets A and B. Note that we put the complete source code
of the workflow as well as the Terraform and Ansible con-
figuration files for AWS on GitHub as open source for
interested readers who want to reproduce our setup and
results [58, 59].

Use case 2: shape optimisation via structural analysis
Our second use case focuses on workflows where the
number of iterations and the number of parallel execu-
tions per iteration are not known when designing and
launching the workflow and can change dynamically dur-
ing the execution (i.e. without any a priori design-time
or run-time knowledge). The aim is to perform a shape
optimisation of a given 3D object using structural analy-
sis simulations inside a sparse grid, similar to the approach
presented by Tamellini et al. [60]. Such optimisations are

Table 3 Input data sets for the Montage workflow

ID Centre Width× Height n files Total size

A Orion Nebula 2 ×2 degrees 5,685 7.9 GB

B 83.8197953, -5.2051492 0.9 ×1.4 degrees 3,744 5.2 GB

Table 4 Results of our evaluation with the Montage workflow

Data set ID n compute nodes n process chains Elapsed time

A 4 476,037 10h 24m 27s

A 1 476,037 30h 17m 27s

B 4 318,532 6h 40m 21s

B 1 318,532 18h 31m 21s

performed, for example, in the product development pro-
cess in the area of mechanical engineering. Given an
objective function, the optimisation iteratively tries to
find an optimal shape of the 3D object for a pre-defined
load case. For every iteration, different variants of the
initial object are being simulated in parallel. The num-
ber of variants—and therefore the number of parallel
executions—depends on the variance between the simu-
lation results of the previous iteration. The optimisation
terminates after the simulation results have converged and
the variance between them is below a certain threshold.
For our evaluation, we used a Catmull-Clark subdivision

solid model [61] of a wrench. On that model, we defined
three parameters: the outer diameter of the open end of
the wrench, the thickness of the middle section relative
to the xy plane, and the thickness of the middle section
relative to the xz plane. Figure 17 shows three design vari-
ants of the wrench models, each corresponding to differ-
ent values of these parameters. During the optimisation,
different sets of parameter values are evaluated using a
structural mechanics simulation. Figure 18 shows the sim-
ulation setup with a fixation at the right end of the wrench
(shown in orange) and an external force being applied to
the left end (yellow box and red arrow). Details on the
process of creating and simulating parametrised Catmull-
Clark subdivision solid models can be found in the work
of Altenhofen et al. [62, 63]. The objective function for
the optimisation models a trade-off between stability and
weight of the wrench, favouring light designs while ensur-
ing the stress and the deformation under load to be below
a given threshold.
Figure 19 shows the workflow in our Petri Net notation.

It starts with a processing service called createInitialSam-
ples creating a pre-defined number of initial sample points
in the parameter space [ 0, 1]3 along a regular grid. Each
point represents a set of parameter values corresponding
to a concrete design variant of the wrench to be optimised.
The workflow contains an outer for-each action that is

used to model multiple iterations. Its input consists of
either one element or none. If there is an element, it per-
forms an iteration. Otherwise, the workflow terminates.
Inside, there is another for-each action that performs the
simulations on the design variants.
createInitialSamples only creates sample points for the

first iteration. It writes them into a single file. Inside the
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Fig. 16 Result mosaics produced by the Montage workflow

outer for-each action, this file is first split into individ-
ual files—one for each sample point—by the splitSamples
service. For each sample point, runSimulation performs a
structural analysis simulation in the inner for-each action.
The different simulations run in parallel. Each simulation
writes its results to a separate file.

The service evaluateSimResults reads these files and
maps the results to a score value using the objective
function. The best sample point defines the centre of a
new, smaller grid that is sampled in the next iteration
of the optimisation process. 23 to 73 sample points are
created, depending on the variance between the score

Fig. 17 Different geometry variants of the wrench model including parameters to be optimised
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Fig. 18 Simulation scenario

values. Finally, evaluateSimResults creates a new file with
the sample points that is fed back into the outer for-each
action. The workflow finishes when evaluateSimResults
does not create a new file with sample points but instead
writes the final parameter set to another file specified by
its second output.
In our evaluation setup, the optimisation performed 6

iterations, evaluating a total number of 67 sample points.
Figure 20 shows the distribution of sample points inside
the parameter space. Figure 21 shows the score values
and their variance throughout the iterations. The opti-
mised wrenchmodel is 15.6% lighter compared to a design
manually created by the engineer. At the same time, the
maximum stress is reduced by 10.7% and the maximum
deformation is reduced by 62.2%.
Table 5 shows the run time of the optimisation on dif-

ferent numbers of virtual machines in the Amazon cloud.
Please note that the speed-up per machine is reduced
when using more than 8 machines since the first iter-
ation evaluates 27 sample points, while the remaining
five iterations each evaluate 8 sample points according
to a reduced variance between the simulation results.
Including the pre- and post-processing services, 80 pro-
cesses are executed in total.

Comparison with Pegasus
In this section, we compare our approach with Pegasus,
a popular workflow management systems, which is open-
source and represents other systems that consume DAGs
as input very well. We applied Pegasus to both of our use
cases.

Use case 1
In the official GitHub organisation of Pegasus [64], there
is an implementation of a Montage workflow similar to
the one described in “Use case 1: computing astronomi-
cal image mosaics” section. The repository consists of a
Python script that requires you to specify the area of the
sky for the image to create as an argument. From this, it
generates a suitable DAG for Pegasus.
The script first downloads the raw images. It then needs

to perform further calculations. This is because the ser-
vice mDiffFit must be executed for each overlap in the
raw images during workflow execution. However, which
raw images actually overlap can only be determined after
their projection, which is done in the workflow as well.
This is a problem because the execution of mDiffFit has
to be modelled in the DAG in advance. As a solution, the
program mDAGTbls is used to generate an estimation of
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Fig. 19 The shape optimisation workflow

where overlaps exist. This estimation is inaccurate and
provides a superset of true overlaps. However, the execu-
tion of mDiffFit can be planned based on this estimate.
Since the estimation is a superset, no data is lost. Never-
theless, more service calls are planned than would actually
be necessary for execution.
Our system, on the other hand, supports “Multiple

instances without a priori run-time knowledge” and is able
to plan the execution of mDiffFit at run time. No estima-
tion is required before the workflow is executed, and only
needed service instances are created.We ran the workflow
with the parameters specified in the Pegasus Montage
repository and the number of mDiffFit calls were reduced
from 900 (Pegasus) to 216 (our approach).
In addition, our approach does not need a setup

script at all. Since our system can dynamically adapt
the workflow structure during run time, we can even
perform the download of the raw images within the

workflow (see our implementation of the Montage
workflow [58]).
This has multiple advantages: First, it avoids additional

development effort during workflow design and reduces
maintenance overhead later on because it allows users to
focus on the workflow itself without requiring them to
write a setup script in a general purpose programming
language such as Python.
Furthermore, the computation (and even the download)

can be completely executed in the cloud. Also, the setup
script of Pegasus cannot be parallelised. Our approach
therefore saves resources and also allows for maxi-
mum parallelisation (our implementation of the Montage
workflow even downloads the raw images in parallel—
depending on the Internet connection and the amount of
data to be retrieved, this can save a lot of time).
Another benefit is that our approach allows the same

workflow to be used for multiple input data sets. It has
very few parameters: the name of the survey providing the
raw images, the celestial object or the location to focus
on, and the width and height of the area of interest in
degrees. These parameters are specified as variables in our
workflow file. Users can change them and then directly
submit the workflow without any further changes on the
structure.

Use case 2
The missing support of “Multiple instances without a pri-
ori run-time knowledge” in Pegasus complicates the design
of our second use case. The number of iterations of the
outer loop in Fig. 19 is unknown before execution. Only
when the simulation results are available, it can be decided
if another iteration is necessary. This is similar to the
situation in the Montage workflow, where the number
of overlaps is calculated during run time. However, it is
not possible to estimate a superset here. The only pos-
sibility for an execution using a single DAG would be to
define a maximum number of iterations. All these itera-
tions would have to be planned regardless of whether they
are needed for a concrete data set or not. Also, the optimi-
sation would not finish correctly if too few iterations were
planned.
Alternatively, Pegasus offers the concept of sub-

workflows. During the execution of the workflow a new
DAG can be created and its execution can be triggered.
This way, the simulation results can be evaluated and
a new DAG can be planned afterwards. The new DAG
either contains another iteration or terminates directly.
We implemented the workflow in Pegasus resulting in

the rather complex run time model shown in Fig. 22. The
workflow starts on the left hand side (1). It first creates the
set of initial sample points and then plans a newDAGwith
a static number of simulations (based on the number of
sample points). It then executes the DAG by submitting it
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Fig. 20 Traversal of the parameter space

to Pegasus. This leads to a new sub-workflow (2) that per-
forms the actual simulations and evaluates their results.
Based on this, another DAG is planned and executed,
which again leads to a new sub-workflow. This process
repeats recursively (3) andmore nested sub-workflows are
generated and executed. Since it is not possible to know in
advance when the workflow will end, even the final itera-
tion (4) contains actions to plan and execute a new DAG.
The structure of a workflow cannot change during run
time in Pegasus, so these actions have to be executed, even

though there is no more work to do. They just generate
and submit a final empty workflow (5).
Note that the first workflow (1) has to wait until all

recursively embedded workflows have finished. Depend-
ing on the number of iterations, this may lead to a large
number of workflows running in parallel.
With our approach, on the other hand, all steps happen

in only one workflow. If you compare Fig. 22 with Fig. 19,
you will notice that our implementation is significantly
less complex. Also, our approach saves resources, does not

Fig. 21 Score over iterations
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Table 5 Run time results of our optimisation workflow

n virtual machines Elapsed time Speed-up

1 88.8 min. 1.0

2 37.1 min. 2.4

4 21.5 min. 4.1

6 16.3 min. 5.4

8 12.7 min. 7.1

10 10.1 min. 8.8

12 10.2 min. 8.7

require a workaround with static sub-workflows, and is
easier to design and maintain.

Comparison with Argo
Besides Pegasus, we also compared our approach with
the scientific workflow management system Argo, which
offers features that are very close to our system. Com-
pared to Pegasus, it even offers constructs to specify
loops and recursion. However, these constructs are not
as powerful as ours. The two use cases therefore require
workarounds that make the workflow definitions longer
and more complex.

Use case 1
Argo is based on Kubernetes. Workflows are defined
as Kubernetes Custom Resource Definitions (CRD) and
actions run inside Docker containers. An action can
communicate with Argo by writing a JSON array to its
standard output. Argo is able to iterate over the array
entries and to dynamically create new containers. This
enables “Multiple instances with a priori run-time knowl-
edge”.
Compared to Pegasus, this feature makes it slightly eas-

ier to define the Montage workflow because the workflow
structure does not have to be specified completely in
advance. However, the services from the Montage toolkit
do not produce JSON arrays. They write their results
to files. In order to make them compatible with Argo’s
approach, workflow designers are either required to write
wrapper services that transform the output of the services
to JSON, or they have to create additional Docker contain-
ers that need to be executed after eachMontage service to
convert the list of files produced by this service to a JSON
array.
Figure 23 shows such a Docker container. It is based

on the python:alpine3.6 base image and contains a small
Python program that reads all files from a directory and
prints them as a JSON array.

Fig. 22 Implementation of the shape optimisation in Pegasus
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Fig. 23 Example of an additional workflow step in Argo converting a
list of files to a JSON array

In contrast, our system supports multiple output
files natively and therefore does not require such a
workaround.

Use case 2
Use case 2 is more complex than use case 1 as it contains
cycles whose number of iterations can change dynamically
during run time. Compared to our approach, this feature
is not directly supported by Argo. The system supports
loops, but these loops can only iterate over a JSON array
(as described above) and do not have a dynamic break
condition. Nevertheless, this feature can still be used
to model the inner for-each action of the workflow of
use case 2. However, similar to the Montage workflow,
this requires to either change the implementation of the
splitSamples service so it writes a JSON array to its stan-
dard output, or to implement an additional workflow step
starting a container to convert the list of files to an array.

The outer for-each action of the workflow has a dynamic
number of iterations. It stops when the evaluateSimRe-
sults service does not produce a new samples file. In
order to implement this behaviour with Argo, several
workarounds need to be applied, which we describe in the
following.
Argo is able to conditionally execute a workflow step.

Since workflows are specified as so-called templates and a
workflow step can be to execute a template, Argo allows
each workflow template to call itself recursively. However,
in contrast to our approach, the outputs of all work-
flow steps are hard-coded in the workflow template. This
means that output files of the individual services are over-
written on each recursive call. One possibility to prevent
this is to introduce a counter variable and to append its
value to each output file name.
However, Argo has no support for counters and also

does not offer a function to increment the value of a
numerical variable. Similar to the file listing, the workflow
designer needs to write an additional workflow step that

consists of a Python program incrementing the counter
and writing its new value to its standard output (see
Fig. 24).
In addition, there is no possibility to stop the recursion

based on the fact that a file does not exist (as necessary for
the outer for-each action of this workflow). One possibility
to work around this is to specify the name of the file (hard-
coded with the counter value appended) as an output of
the evaluateSimResults service and to specify a default
value that will be applied if reading the file leads to an I/O
error. This default value can then act as a break condi-
tion for the recursion. Note that this idea cannot exactly
be mapped to how our system works because an I/O error
does not necessarily mean that a file does not exist. It
could be an actual fault (i.e. the network is temporarily
unavailable), which would be ignored and would in fact
lead to a successful workflow run. This can be dangerous
as it hides actual errors and may lead to faulty simulation
results.
Alternatively, the workflow designer can again write an

additional workflow step with a Python program or a Bash
script checking if the file exists and writing a value to its
standard output.
Both approaches are workarounds that we seek to avoid

with our solution. They make the workflow definition
unnecessarily long and complex. Figure 25 compares the
implementations of use case 2 in our system and Argo.
Both systems use YAML. However, Argo’s definition file
is not only longer in terms of the number of lines (three
times as many lines) but some of them are also very
long. This makes it hard for users to focus on the actual
workflow. Also, the additional steps just needed to cir-
cumvent shortcomings of the system clutter the workflow
definition and make it harder to maintain.

Summary
In “Goals and contributions” section, we defined two
research questions. The first one was related to cre-
ating a distributed system that natively supports cyclic
workflows without a priori run-time knowledge. The eval-
uation results above show that this research question can
be successfully answered.

Fig. 24 Additional workflow step in Argo incrementing a counter
variable
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Fig. 25 Comparison of the implementations of use case 2 in our system and Argo

With the second research question, we wanted to inves-
tigate whether it is possible to design this system in a
way so that cyclic workflows can be implemented without
workarounds. We also wanted to show that this approach
reduces design and maintenance effort. The implemented
use cases above demonstrate that this is indeed possible.
We summarised the differences between our system and
the two tested ones in this regard in Table 6.
The table shows that our approach enables less com-

plex workflow definitions since it offers native support

for features that are important for the design and execu-
tion of cyclic workflows. For example, our system does
not require the workflow designer to write additional
generator scripts. It also does not need sub-workflows to
simulate a dynamic workflow execution without a priori
run-time knowledge.
Our system also does not require the workflow designer

to keep an overview over hard-coded file names used
within the workflow as well as over dependencies between
actions. Our workflow model uses variables to store file
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Table 6 Differences between the tested systems with regard to maintainability

Pegasus Argo Our approach

Workflow structure is independent
of input data

Requires generator script Yes Yes

Requires sub-workflows Yes Uses workflow templates No

File namesmust be defined explicitly No (variables) Yes No (variables)

Dependencies between actions
must be modelled explicitly

Yes No, but hard-coded file names No

Iterate over a dynamic list of files
created during run time

No No Yes

Number of lines that needed to be
written for use case 2

228 239 79

Bold entries highlight the benefits of our approach

names, and the system is able to automatically detect
dependencies based on the usage of these variables.
In addition, our system is able to dynamically

generate a list of file names from a directory during
run time and to create a matching number of action
instances to process these files in parallel. Pegasus and
Argo require custom actions, sub-workflows/templates,
or counter variables to simulate this behaviour.
To summarise, our system allows for writing work-

flow definitions that are much less complex and shorter
than in the other systems. On the long run, these fea-
tures help users in designing workflows and improves
maintainability.

Conclusions
In this paper, we described an approach to scientific
workflow management that supports complex, real-world
scenarios where the structure of a workflow depends on
the data to be processed and may change during run
time. We presented an algorithm that traverses scientific
workflow graphs and transforms them into independent
linear sequences called process chains. We also presented
a corresponding software architecture that executes the
process chains in parallel in a distributed environment
such as the cloud. Our system works iteratively and cre-
ates individual instances of workflow actions dynamically
depending on both input data and data generated by pre-
ceding actions during run time. This enables support for
the pattern “Multiple instances without a priori run-time
knowledge” [13] and allows workflow designers to specify
cycles in the workflow graph.
With the growing amount of global data, automated

data processing solutions have become a fundamental
tool. Data scientists often have to deal with a large num-
ber of heterogeneous data sets from various sources. In
this respect, it is important that the complexity of the data
processing pipeline stays at a maintainable level so the
pipeline can be reused and extended over a long period
of time. Compared to existing solutions, our approach

does not rely onmodelling directed acyclic graphs (DAGs)
and does not require the workflow designer to implement
special constructs for cycles and dynamically changing
workflow structures. Instead, support for this is built into
our solution, which leads to shorter, more reusable, and
maintainable workflow designs. We have further shown
that our approach allows for modelling generic workflows
that can be applied to multiple input data sets without the
need to change the static structure.
Our research questions defined in “Goals and contribu-

tions” section could therefore be answered successfully:
It is possible to create a distributed scientific workflow
management system that natively supports cyclic scien-
tific workflows involving multiple instances of workflow
actions without a priori run-time knowledge, and this
native support leads to less complex workflows that do not
require workarounds.
One of the building blocks of our approach is the

lightweight workflow model presented in “Workflow
model” section. This model consists of only two types
of actions: execute and for-each. These actions are very
generic and allow almost arbitrary workflows to be
modelled. However, they are also limited in terms of
expressiveness. For example, in our second use case in
“Use case 2: shape optimisation via structural analysis”
section, we used a for-each action to model multiple iter-
ations that stop as soon as a certain condition becomes
true, namely when the for-each action does not receive
more input items from the last of its sub-actions. This
break condition is implicit. In terms of maintainability, it
would potentially be easier to comprehend if we had an
explicit if action. Investigating the use of such an action
remains for future work.
Another useful improvement to our system could be

to unroll for-each actions only partially. This would help
avoid having to keep all cloned instances of sub-actions in
memory at the same time, which would further improve
the scalability of our system, in particular if there is a large
number of input items.
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In this sense, we are continuously exploring new
areas and improving our approach. The research
results presented have evolved from a larger group
of previous works: a microservice architecture for
the processing of large geospatial data [3], workflow
modelling with domain-specific languages [65], as well
as capability-based task scheduling of process chains in
a distributed environment [66]. As mentioned earlier,
an implementation of our algorithm and our software
architecture is available with the open-source workflow
management system Steep [15]. The source code to
reproduce our first use case is also available [58, 59].

Abbreviations
DAG: Directed acyclic graph; JVM: Java virtual machine; AWS: Amazon web
services; 2MASS: Two micron all sky survey

Acknowledgements
This publication makes use of data products from the Two Micron All Sky
Survey, which is a joint project of the University of Massachusetts and the
Infrared Processing and Analysis Center/California Institute of Technology,
funded by the National Aeronautics and Space Administration and the
National Science Foundation.

Authors’ contributions
Michel Krämer is the main author of the manuscript. He has designed the
algorithm and the software architecture and implemented them in the
open-source workflow management system Steep. Hendrik M. Würz has
contributed “Related work” and “Comparison with Pegasus” sections and
helped Michel Krämer with fruitful discussions during the algorithm design
phase. Christian Altenhofen has implemented the shape optimisation
workflow to evaluate the approach presented in this paper. He wrote
“Use case 2: shape optimisation via structural analysis” section summarising his
findings. The author(s) read and approved the final manuscript.

Authors’ information
Michel Krämer
Dr. Michel Krämer is deputy head of the competence centre for Spatial
Information Management at the Fraunhofer Institute for Computer Graphics
Research IGD. He received a PhD in Computer Science from the Technical
University of Darmstadt. His research interests are in processing of big
geospatial data, microservices, Cloud Computing, and DevOps. Michel Krämer
has contributed to a number of EC-funded research projects. Michel Krämer is
development lead of several open source projects and contributes to popular
frameworks and libraries.
Hendrik M. Würz
Hendrik M. Würz is a researcher at the Fraunhofer Institute for Computer
Graphics Research IGD and studies visual computing at the Technical
University of Darmstadt. He is interested in the distributed processing of big
data and the possibilities of Function as a Service. Hendrik M. Würz has
experience in the preparation of geodata for visualisation and the usage of
cloud-based resources.
Christian Altenhofen
Christian Altenhofen, M.Sc. is a senior researcher at the Fraunhofer Institute for
Computer Graphics Research IGD and PhD student at Technical University of
Darmstadt. As part of the competence centre for “Interactive Engineering
Technologies” at IGD, he works on improving product development and
manufacturing processes by developing novel methods in the areas of
Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), and
Isogeometric Analysis (IGA). In the past seven years, Christian Altenhofen has
participated in several EC-funded, as well as nationally and regionally funded
research projects, two of which focussed on bringing engineering services to
the Cloud.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data andmaterials
The source code of our algorithm and software architecture is available as open
source on GitHub [15]. The code (and a script to download the 2MASS data) to
reproduce the first use case from our evaluation is also available [58, 59]. We
cannot provide data for the second use case as it is proprietary. However, the
repository of Steep contains many test fixtures similar to this use case.

Competing interests
The authors declare that they have no competing interests.

Author details
1Fraunhofer Institute for Computer Graphics Research IGD, Fraunhoferstr. 5,
64283 Darmstadt, Germany. 2Technical University of Darmstadt, 64289
Darmstadt, Germany.

Received: 25 May 2020 Accepted: 19 January 2021

References
1. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T,

Glover K, Pocock MR, Wipat A, Li P (2004) Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics
20(17):3045–3054. https://doi.org/10.1093/bioinformatics/bth361

2. Graves R, Jordan TH, Callaghan S, Deelman E, Field E, Juve G, Kesselman C,
Maechling P, Mehta G, Milner K, Okaya D, Small P, Vahi K (2011)
Cybershake: A physics-based seismic hazard model for southern
california. Pure Appl Geophys 168(3):367–381. https://doi.org/10.1007/
s00024-010-0161-6

3. Krämer M (2018) A microservice architecture for the processing of large
geospatial data in the cloud. PhD thesis, Technische Universität
Darmstadt. https://doi.org/10.13140/RG.2.2.30034.66248

4. Krämer M, Senner I (2015) A modular software architecture for processing
of big geospatial data in the cloud. Comput Graph 49:69–81. https://doi.
org/10.1016/j.cag.2015.02.005

5. Berriman GB, Deelman E, Good JC, Jacob JC, Katz DS, Kesselman C, Laity
AC, Prince TA, Singh G, Su M-H (2004) Montage: a grid-enabled engine for
delivering custom science-grade mosaics on demand. In: Optimizing
Scientific Return for Astronomy Through Information Technologies, vol.
5493. International Society for Optics and Photonics, Amsterdam.
pp 221–233

6. Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, Mayani R,
Chen W, Ferreira da Silva R, Livny M, Wenger K (2015) Pegasus: a workflow
management system for science automation. Futur Gener Comput Syst
46:17–35. https://doi.org/10.1016/j.future.2014.10.008

7. Apache Airflow Documentation. https://airflow.apache.org/. Accessed 14
April 2020

8. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark:
Cluster computing with working sets. In: Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing. pp 1–10

9. Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K (2015)
Apache Flink: Stream and batch processing in a single engine. Bull IEEE
Comput Soc Tech Comm Data Eng 36(4):28–38

10. Rodriguez MA, Buyya R (2014) Deadline based resource provisioning and
scheduling algorithm for scientific workflows on clouds. IEEE Trans Cloud
Comput 2(2):222–235. https://doi.org/10.1109/TCC.2014.2314655

11. Malawski M, Juve G, Deelman E, Nabrzyski J (2012) Cost- and
deadline-constrained provisioning for scientific workflow ensembles in
IaaS clouds. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. pp 1–11.
https://doi.org/10.1109/SC.2012.38

12. Bux M, Brandt J, Lipka C, Hakimzadeh K, Dowling J, Leser U (2015)
SAASFEE: Scalable scientific workflow execution engine. Proc VLDB
Endow 8(12):1892–1895. https://doi.org/10.14778/2824032.2824094

13. Russell N, van van der Aalst WMP, ter Hofstede AHM (2016) Workflow
Patterns: The Definitive Guide. MIT Press, Cambridge

14. van der Aalst W, van Hee K (2004) Workflow Management: Models,
Methods, and Systems. MIT Press, Cambridge

15. Steep Workflow Management System. https://steep-wms.github.io/.
Accessed 14 April 2020

16. Deelman E, Peterka T, Altintas I, Carothers CD, van Dam KK, Moreland K,
Parashar M, Ramakrishnan L, Taufer M, Vetter J (2018) The future of
scientific workflows. Int J High Perform Comput Appl 32(1):159–175

https://doi.org/10.1093/bioinformatics/bth361
https://doi.org/10.1007/s00024-010-0161-6
https://doi.org/10.1007/s00024-010-0161-6
https://doi.org/10.13140/RG.2.2.30034.66248
https://doi.org/10.1016/j.cag.2015.02.005
https://doi.org/10.1016/j.cag.2015.02.005
https://doi.org/10.1016/j.future.2014.10.008
https://airflow.apache.org/
https://doi.org/10.1109/TCC.2014.2314655
https://doi.org/10.1109/SC.2012.38
https://doi.org/10.14778/2824032.2824094
https://steep-wms.github.io/


Krämer et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:25 Page 25 of 26

17. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 11(8):1–13

18. Bernhardsson E Luigi Presentation NYC Data Science. https://www.
slideshare.net/erikbern/luigi-presentation-nyc-data-science. Accessed 14
April 2020

19. Balis B (2016) Hyperflow: A model of computation, programming
approach and enactment engine for complex distributed workflows.
Futur Gener Comput Syst 55:147–162

20. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT (2013)
Swift/T: Large-scale application composition via distributed-memory
dataflow processing. In: 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. IEEE, New York City. pp 95–102

21. Zhao Y, Hategan M, Clifford B, Foster I, Von Laszewski G, Nefedova V, Raicu
I, Stef-Praun T, Wilde M (2007) Swift: Fast, reliable, loosely coupled parallel
computation. In: IEEE Congress on Services (Services 2007). IEEE, New
York City. pp 199–206

22. von Laszewski G, Hategan M (2005) Workflow concepts of the java CoG kit.
J Grid Comput 3(3):239–258. https://doi.org/10.1007/s10723-005-9013-5

23. Ogasawara E, Dias J, Silva V, Chirigati F, de Oliveira D, Porto F, Valduriez P,
Mattoso M (2013) Chiron: a parallel engine for algebraic scientific
workflows. Concurr Comput Pract Exp 25(16):2327–2341

24. de Oliveira D, Ogasawara E, Baião F, Mattoso M (2010) Scicumulus: A
lightweight cloud middleware to explore many task computing
paradigm in scientific workflows. In: 2010 IEEE 3rd International
Conference on Cloud Computing. IEEE, New York City. pp 378–385

25. Ogasawara E, De Oliveira D, Valduriez P, Dias J, Porto F, Mattoso M (2011)
An algebraic approach for data-centric scientific workflows. Proc VLDB
Endowment (PVLDB) 4(11):1328–1339

26. Souza R, Silva V, Coutinho AL, Valduriez P, Mattoso M (2017) Data
reduction in scientific workflows using provenance monitoring and user
steering. Futur Gener Comput Syst 110:481–501. https://doi.org/10.1016/
j.future.2017.11.028

27. Dias J, Ogasawara E, de Oliveira D, Porto F, Coutinho AL, Mattoso M (2011)
Supporting dynamic parameter sweep in adaptive and user-steered
workflow. In: Proceedings of the 6th Workshop on Workflows in Support
of Large-scale Science. Association for Computing Machinery, New York.
pp 31–36. https://doi.org/10.1145/2110497.2110502

28. Dias J, Guerra G, Rochinha F, Coutinho AL, Valduriez P, Mattoso M (2015)
Data-centric iteration in dynamic workflows. Futur Gener Comput Syst
46:114–126

29. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T (2006)
Taverna: a tool for building and running workflows of services. Nucleic
Acids Res 34:729–732

30. Abouelhoda M, Issa SA, GhanemM (2012) Tavaxy: Integrating taverna and
galaxy workflows with cloud computing support. BMC Bioinformatics
13(1):1–19

31. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S (2004) Kepler:
an extensible system for design and execution of scientific workflows. In:
16th International Conference on Scientific and Statistical Database
Management. IEEE, New York City. pp 423–424

32. Wang J, Altintas I (2012) Early cloud experiences with the kepler scientific
workflow system. Proc Comput Sci 9:1630–1634

33. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on
large clusters. Commun ACM 51(1):107–113

34. Shvachko K, Kuang H, Radia S, Chansler R, et al (2010) The hadoop
distributed file system. In: MSST, vol. 10. IEEE, New York City. pp 1–10.
https://doi.org/10.1109/MSST.2010.5496972

35. Wang J, Crawl D, Altintas I (2012) A framework for distributed data-parallel
execution in the kepler scientific workflow system. Proc Comput Sci
9:1620–1629

36. Fei X, Lu S, Lin C (2009) A mapreduce-enabled scientific workflow
composition framework. In: IEEE International Conference on Web
Services. IEEE, New York City. pp 663–670

37. Souza R, Silva V, Miranda P, Lima A, Valduriez P, Mattoso M (2017) Spark
scalability analysis in a scientific workflow. In: Simpósio Brasileiro de Banco
de Dados. UFC Brazil and UNI7 Brazil, Uberlandia, Minas Gerais. pp 1–6

38. Gaspar D, Porto F, Akbarinia R, Pacitti E (2017) Tardis: Optimal execution of
scientific workflows in Apache Spark. In: International Conference on Big
Data Analytics and Knowledge Discovery. Springer, Cham. pp 74–87

39. van der Aalst WMP, ter Hofstede AHM (2005) YAWL: yet another workflow
language. Inf Syst 30(4):245–275. https://doi.org/10.1016/j.is.2004.02.002
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