
Vol.:(0123456789)

SN Computer Science (2024) 5:647
https://doi.org/10.1007/s42979-024-02986-z

SN Computer Science

ORIGINAL RESEARCH

Executing Ad‑Hoc Queries on Large Geospatial Data Sets Without
Acceleration Structures

Pascal Bormann1,2 · Michel Krämer1,2 · Hendrik M. Würz1,2 · Patrick Göhringer1,2

Received: 29 November 2022 / Accepted: 22 May 2024
© The Author(s) 2024

Abstract
In this case study, we investigate if it is possible to harness the capabilities of modern commodity hardware to perform ad-hoc
queries on large raw geospatial data sets. Normally, this requires building an index structure, which is a time-consuming
process. We aim to provide means to individual users who receive a new or updated geospatial data set and want to directly
start working with it without having to build such an index structure first. To this end, we conduct various experiments on
two distinct types of data: 3D building models and point clouds. For the former, we demonstrate that well-known algorithms
such as fast string search allow a wide range of queries to be answered in at most a few seconds on data sets with over a
million buildings. The usage of progressive indexing additionally improves query run time by more than a factor of two.
Regarding point clouds, we achieve similar run times using the popular LAS file format and a query throughput of up to a
billion points per second when using a columnar memory layout. The run time of ad-hoc queries is often on par with that of
database-driven solutions, sometimes even outperforming them. Considering that ad-hoc queries require no preprocessing,
our results show that they are a viable alternative to acceleration structures when working with geospatial data.

Keywords Information retrieval · Searching · Geospatial data · Building models · Point clouds

Introduction

Geospatial information is important for a wide range of
applications. Professional users from mapping agencies,
municipalities, or companies require timely access to up-
to-date data for use cases such as environmental monitoring,
infrastructure planning, catastrophe management, or health
care. Simultaneously, an increasing number of data acquisi-
tion sensors and devices produce large amounts of data in
a short time [1]. For example, terrestrial mobile mapping

systems mounted on cars [2, 3] are deployed in urban areas
to continuously monitor the environment or to support plan-
ning processes. They collect 3D point clouds and panorama
images on a daily basis. Point clouds produced by airborne
laser scanners are in turn used to generate 3D building mod-
els [4], which are further enriched with semantic informa-
tion. Earth observation initiatives such as the Sentinel mis-
sions [5] from the Copernicus programme [6] constantly
produce imagery that is immediately made available to the
public and is free of charge.

Domain experts are increasingly faced with the challenge
that they receive new or updated large data sets (sometimes
on a daily basis) and need immediate access to them. The
classic way to work with such data is to load it into a geo-
spatial information system or database. These systems offer
a wide range of functionality. In order to provide users with
access to individual items from large data sets, they create
acceleration structures such as inverted indexes. Other tools
reorder the raw data and optimize it for certain use cases.
Potree, for example, processes point clouds and creates an
acceleration structure for fast web visualization [7].

However, in our practical work, we have observed that
the larger the data becomes, the harder it is to create an

 * Pascal Bormann
 pascal.bormann@igd.fraunhofer.de

 * Michel Krämer
 michel.kraemer@igd.fraunhofer.de

 Hendrik M. Würz
 hendrik.martin.wuerz@igd.fraunhofer.de

 Patrick Göhringer
 patrick.goehringer@stud.tu-darmstadt.de

1 Fraunhofer Institute for Computer Graphics Research IGD,
64283 Darmstadt, Germany

2 Technical University of Darmstadt, 64289 Darmstadt,
Germany

http://orcid.org/0000-0001-6687-0082
http://orcid.org/0000-0003-2775-5844
http://orcid.org/0000-0002-4664-953X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02986-z&domain=pdf

 SN Computer Science (2024) 5:647 647 Page 2 of 22

SN Computer Science

acceleration structure for it, and thus, the longer it takes
until the data can be used. Importing big data sets into a
geospatial information system or a database or processing
the data with a tool like Potree sometimes takes several
hours or even days, which prevents (or at least hinders)
timely access to up-to-date information. We have also
observed that, as a consequence, new or updated data sets
are often provided as raw files without an acceleration
structure on a remote server for download to the local disk.
To immediately use such data in their applications (or
simply to evaluate it before importing it into a database),
individual users therefore would benefit from a system that
allows them to work directly (i.e. ad-hoc) on the raw data.

The necessity of creating an acceleration structure—a
process called indexing—is a fundamental insight of
the computer science discipline rooted in algorithmic
complexity analysis. If either the data size scales up or
the maximum allowed query time scales down, the jump
from linear to logarithmic lookup time is crucial. Modern
computer architectures are, however, hardly as simple as
the models we use for algorithmic complexity analysis. As
such, there is a fundamental difference between a system
that is algorithmically efficient and one that is actually
usable—i.e. one that meets the user expectations in terms
of run time. Something that is efficient might still not be
usable, and something that is usable might not be efficient.
At the same time, something that was considered large
data a few years ago might be perfectly manageable by
commodity hardware today.

Our main aim in this case study is, therefore, to
empirically investigate if it is possible to perform ad-hoc
queries on large geospatial data using raw files without
indexing. To this end, we conduct various experiments
with different data sets and measure the performance
of practical ad-hoc queries. We compare the results
with existing systems and critically discuss benefits
and drawbacks of working without an index. Since the
main challenge of querying unindexed geospatial data
are the large data volume and high number of individual
data points, we explain strategies for increasing query
throughput using the power of modern hardware.

Specifically, the goals of our study are as follows:

• We aim to provide means to individual users who get
a new or updated data set and want to quickly start
working with it. For example, they should be able to
timely access single data items, to analyse the data, or
to quickly visualize small parts of it without having to
load the whole data set into a geospatial information
system or a database first.

• Since we target individual users, we want to investigate
the possibilities of modern commodity hardware
instead of large compute clusters. The results of the

experiments presented in this paper were all collected
on a standard laptop.

• We want to evaluate if simple but well-known
algorithms such as a fast string search can be used
to replace complex and time-consuming indexing. It
should still be possible to achieve reasonable access
times for common geospatial queries.

Note that our non-goals are as follows:

• We do not want to create a universal approach that
applies to all kinds of data sets with different formats
or schemas. In this paper, we only investigate 3D
city models and point clouds, which are two of the
most common kinds of geospatial data. They are also
distinctively different in structure and therefore suitable
to represent a range of other formats (including textual
as well as binary ones).

• The programs we created for our experiments do not
support scalability in terms of numbers of queries
per second or number of users working in parallel.
We address individual users who download a new or
updated data set from a remote server to their local hard
drive.

• We focus on common geospatial queries (e.g. based on
attributes or bounding boxes) and on extracting single
data items or small parts of a large data set. We do not
cover more complex data analyses or visualizations.

The main contribution of this case study are the results
of the experiments as well as strategies for improving
the query throughput on raw geospatial data files,
both for textual and binary data. They provide useful
and interesting insights for researchers and software
developers of geospatial information management and
analysis systems who need to work with large and up-to-
date data sets. The results demonstrate that ad-hoc queries
are a viable alternative to indexing for geospatial data
management.

The paper starts with an overview of related work
(“Related Work” section) and an introduction into the
methodology of our study (“Methodology” section). It
is then structured in two parts illustrating ad-hoc queries
on building models (“Querying Building Data” section)
and point clouds (“Querying Point Cloud Data” section).
Based on the experimental results, we critically discuss
the implications on applications working with geodata
(“Discussion” section). The paper finishes with conclusions
and an outlook on future research possibilities (“Conclusion”
section).

SN Computer Science (2024) 5:647 Page 3 of 22 647

SN Computer Science

Differences to the Conference Paper

This paper is a significant extension of our conference
paper presented at DATA 2022 [8]. The previous work
was a position paper where we presented our idea and first
results of experiments with building and point cloud data.
In the meantime, we were able to explore new research
aspects. In summary, the extended paper covers the
following additional topics:

• We have extended our posit ion paper to a
comprehensive case study that covers many more
experiments than before. The results now also contain
more details and comprehensive in-depth discussions
(see “Methodology”–“Discussion” sections).

• The “Related Work” section has been completely
revised. In particular, we have included a list of existing
works on dynamic indexing approaches (“Dynamic
Indexing Approaches” section).

• We have revised our comparison with existing tools,
in particular the solutions for managing building data
(“Comparison with Existing Solutions” section). We
upgraded the tool GeoRocket to the latest alpha version,
which promises a higher performance and performed
our experiments again to get updated measurements.

• We extended our approach for the search in building
data and added a completely new section on progressive
bounding box index generation (“Progressive Bounding
Box Index Generation” section). This section shows
how our approach can be combined with existing ones
to open up new research possibilities.

Related Work

Searching for an element in a large set of candidates is
a well-studied area. The following sections summarize
known search algorithms, the use cases in which they
are applied, and the additional knowledge they exploit.
We focus on searching in text data (“Searching Text
Data” section) and binary data (“Searching Binary Data”
section). After that, we given an overview of specialized
solutions to search for geospatial information (“Searching
Geospatial Data” section). Finally, we summarize
approaches to information retrieval that either create an
index on demand (or incrementally) or that try to avoid
creating an index at all (“Dynamic Indexing Approaches”
section).

Searching Text Data

String matching is a search for a sequence of characters
(pattern) in a larger sequence (text). Knowledge about the
pattern can be exploited to skip as many bytes as possible
in the text and hence to improve performance.

One of the best known algorithms in this area is
Boyer–Moore [9]. In contrast to a naïve linear search
where the first character of the pattern is compared to every
character of the text, Boyer–Moore starts at the end of the
pattern. If the last character does not match with the text,
the previous characters do not need to be checked and
the algorithm can skip some parts of the text. The longer
the pattern, the more likely it is that a larger number of
characters can be skipped.

Horspool simplified Boyer–Moore’s algorithm by
removing comparisons related to repetitions in the pattern
[10]. These comparisons provided little improvement for
natural language text and did not justify the additional effort.
Raita exploited another effect with regard to natural language
text: the closer the characters, the more they depend on
each other [11]. Similar to Boyer–Moore–Horspool, Raita’s
improvement first looks at the last character of the pattern.
After that, however, the first character is evaluated rather
than the second to last. In this way, the dependencies
between the characters are as small as possible and the
probability of detecting a difference early is higher.

An alternative to Boyer–Moore is the algorithm of
Knuth–Morris–Pratt [12]. Unlike Boyer–Moore, it starts
with the first character of the pattern and not the last one but
still tries to skip as many characters as possible. Comparing
the two algorithms, Boyer–Moore is usually faster when
searching in natural language text. However, when the
underlying alphabet is very small, Knuth–Morris–Pratt may
be better [13].

The algorithms mentioned above only search for a
single pattern. Aho–Corasick introduced an algorithm
that can look for multiple patterns at the same time [14].
The algorithm uses a finite state machine to check each
pattern simultaneously as it traverses the text. This works
best when the patterns have a common prefix or suffix.
Commentz–Walter combined the idea of a finite state
machine with Boyer–Moore’s approach to achieve better
run time [15].

Searching Binary Data

Compared to the search in text data, searching binary data
highly depends on the format. Sometimes, individual byte
positions of items in the data can be directly calculated and
sometimes not. In some cases, a fixed bit pattern can be used
as a search pattern, but sometimes, other information from
the file (i.e. the file header) must be evaluated first.

 SN Computer Science (2024) 5:647 647 Page 4 of 22

SN Computer Science

An intermediate stage between plain text files and
arbitrary binary data is compressed text. The goal is still to
find a pattern in a sequence of characters, but the sequence
is now compressed. Some algorithms have been developed
that exploit how the individual compression schemes work
to make use of additional information during the search.
An example is the approach by Navarro [16]. It searches
for regular expressions in a Ziv–Lempel compressed text,
where repetitions in the original text are replaced with
a pointer to the first occurrence. The algorithm takes
advantage of this and only searches individual blocks in
the compression. This doubles the search speed compared
to decompressing and searching afterwards. However, the
algorithm only works with Ziv–Lempel compressed text.
Ganty et al. presented a similar algorithm that can search
on grammar compressed text in general [17]. It returns the
number of matches to a regular expression in linear time.
Another approach was introduced by Ferragina et al [18].
They combine the compression of text with the creation of
an index. This enables fast searches even though the original
text was compressed.

Regarding searching in binary data in general, Gustafsson
et al. present an approach to find patterns in network packets
[19]. Gustafsson et al. read the length of a packet from
the header information. Afterwards, they are able to filter
individual segments using a decision tree.

Searching Geospatial Data

The ability to perform queries on the data is one of the
central features that enable value generation from geospatial
data. While data exchange often happens through specialized
file formats, geospatial applications have long been working
with relational database management systems (RDBMSs)
as their preferred storage backend. The popular PostGIS
project [20] adds support for spatial data to the PostgreSQL
RDBMS and has become a de facto industry standard over
the last two decades. Other RDBMSs with spatial support
are Oracle Spatial [21] and Microsoft SQL Server [22].
Specialized data management solutions such as GeoServer
[23] and Deegree [24] utilize these RDBMSs to store raster
data and geometries.

3DCityDB [25] and GeoRocket [26] are open-source
applications that manage 3D building models. Both
are able to use various relational databases as backend,
whereas GeoRocket also supports NoSQL solutions such as
MongoDB. 3DCityDB and GeoRocket provide a high-level
API with which users can query large 3D city models and
extract individual buildings or small areas using filters based
on semantic attributes or spatial areas (i.e. bounding boxes).

An area where file-based approaches are the default
is point cloud data. A point cloud is a usually unordered
collection of n-dimensional points, with the dimensions

corresponding to predefined attributes, such as the position
in 3D space, a color value or grayscale intensity, or an object
classification, to name a few. Due to the limited amount of
information inherent in a single point, point cloud data
typically consists of millions to billions of individual points.
A popular software for working with point cloud data is
LAStools [27, 28], a set of command line tools for tasks
such as splitting, merging, transforming and rasterizing
point clouds, all based on the standardized LAS file format
[29]. Many point cloud visualization applications also
require acceleration structures in specialized file formats
and layouts. Examples are Potree [30] or Cesium [31], for
which several file-based preprocessing tools exist [32–34].
The standard approach for querying these point clouds is
file grouping: points are grouped together by some primary
key, where points close to each other in the domain of the
key are put into the same file. Executing a query on these
point clouds is then equivalent to looking up the matching
files based on the primary key and the name of the files.
This approach is used by the Potree system [7] for spatial
queries, as well as for queries by object class as proposed
by El-Mahgary et al. [35]. The downside of these file-based
approaches is that they require a complete reordering of the
data, resulting in a copy of the original data. Besides file-
based approaches, there has been recent work studying the
usage of RDBMSs for point clouds. Van Oosterom et al.
conducted a study analysing the performance of common
RDBMSs when storing and retrieving point cloud data [36].
There are also specific RDBMSs available for point cloud
data, such as the Point Cloud Server [37] or the pgPointcloud
extension for PostgreSQL [38]. Still, file-based systems are
used most frequently since working with raw files is simple
and enables more specialized data structures. These in turn
can yield higher point throughput than RDBMSs and can
support specialized features, such as the level-of-detail
support that enables fast web-rendering of point clouds in
the Potree system.

Dynamic Indexing Approaches

Optimizing the performance of queries in databases is
a research area with a long history but still very active
today. Various indexing methods and query optimization
techniques have been investigated. While the traditional
solution is to create an index in advance, there are more
dynamic approaches that work on demand, incrementally,
or that try to avoid creating an index at all.

An incremental indexing technique described by Idreos
et al. is called Database Cracking [39]. Attributes that are
frequently requested are clustered and partially sorted.
The first query on a specific attribute initializes the index
and therefore causes some overhead. With each further
query, however, refined fragments may be created in the

SN Computer Science (2024) 5:647 Page 5 of 22 647

SN Computer Science

index, which incrementally increases the query processing
speed. Database Cracking was specifically designed for an
environment where you have no prior knowledge of what
attributes might be of interest and no time to wait for updates
to be indexed.

Progressive Indexing by Holanda et al. is an adaptive
indexing technique that improves Database Cracking by
providing a guarantee for convergence, more robustness,
more controllable indexing overhead, and lower overhead
for the first query [40]. Each query triggers an incremental
indexing step. The indexing overhead is calculated using
a cost model and a parameter that indicates how many
operations may be performed within a single indexing step.

Hohenstein presents an extended approach to Progressive
Indexing, which is based on approximate query processing
[41]. Hohenstein applies uniform sampling in combination
with rare sub-population detection. This way, the cost of
scanning the data when the index is not yet fully built can be
reduced. The system renders more inaccurate results at the
beginning, in exchange for more speed, but returns accurate
results later when the index is fully built.

To generalize the approach of Database Cracking, Idreos
et al. further address the problem that loading a large data
set into a database takes a lot of time and that setting up and
optimizing databases for data and workload is a complex
task [42]. Their idea is that the user should only have to
provide a link to the data and can start querying directly
while small parts of the data are loaded into the database
only when and if needed. To this end, Idreos et al. extend the
DBMS MonetDB with an adaptive loading strategy. In our
case study, we also aim to create a solution that allows data
to be queried directly, but in contrast, our approach does not
need a database.

Alagiannis et al. present a new paradigm called NoDB,
which abstractly describes a data query solution that avoids
the need of loading data but provides all features of a
modern DBMS [43]. The authors claim that their approach
can reduce the time from data arrival to analysis. They also
see a problem in storing the data in internal, proprietary
database formats, which is avoided by working on raw files.

Another approach, which builds upon the NoDB paradigm,
is presented by Karpathiotakis et al. who add more flexibility
by describing an adaptive query engine that supports
various data formats [44]. Their approach uses Just in Time
compilation (JIT) for querying raw files in a more optimal
way and so-called column shreds to read as few bytes as
necessary. In contrast to the works of Alagiannis et al.
and Karpathiotakis et al., the approach we present in this
paper is focused on geospatial data, which requires specific
operations (such as a bounding box search) but also allows
us to optimize query performance to the use case.

Methodology

In order to evaluate if ad-hoc queries can be performed
in reasonable time on large raw geospatial data sets, we
conducted various practical experiments. We measured
the time for each ad-hoc query and compared the results
with existing solutions. We also identified benefits and
drawbacks of ad-hoc queries compared to acceleration
structures. The following sections give an overview of the
different data types and data sets used in our experiments
(“Data Types” section), the geospatial queries covered
(“Common Geospatial Queries” section), implementation
details (“Implementation” section), as well as the setup for
our experiments (“Experiment Setup” section).

Data Types

As mentioned in the “Introduction” section, we focus on
two types of geospatial data in our case study: 3D building
models and point clouds. Figures 1 and 2 show screenshots
of two applications that visualize both data types in a web
browser.

We chose these data types because they are well-known
but are quite different in their structure and usage. In
addition, there are many large and open data sets available
for these two formats. Building models are often stored in
CityGML [47], which is a textual, XML-based format. Point

Fig. 1 Screenshots of a web viewer showing the enhanced New York City 3D Building Model [45] with semantic attributes

 SN Computer Science (2024) 5:647 647 Page 6 of 22

SN Computer Science

clouds are typically provided in the binary formats LAS [29]
and its compressed variant LAZ.

For the first set of experiments (see “Querying Building
Data” section), we used the enhanced New York CityGML
3D Building Model (version 20v5), which is a combination
of the NYC 3D Building Model [48] and the PLUTO data
file (Primary Land Use Tax Lot Output) [49], both provided
free of charge by the City of New York. The data set consists
of 20 files, has a total size of 20.91 GiB, and contains
1,083,437 buildings with up to 90 semantic attributes per
building. It can be downloaded from GitHub [45]. We
used the raw, extracted files. No indexing was applied.
All experiments were run two times to test different data
sizes: once on a single file (DA12_3D_Buildings_Merged.
gml, 736.3 MiB, 24,038 buildings), and another time on the
whole data set.

For the point clouds, we used three different data sets
varying in size and provided file format. All files are publicly
available and free of charge:

• navvis3: The navvis_m6_3rdFloor data set (139 MiB
LAZ file with 56.2 million points) [50]

• doc: The District of Columbia 2018 scan (22.2 GiB, 319
LAS files, 854 million points) [51]

• ca13: A subset of the PG &E Diablo Canyon Power Plant
data set (12.7 GiB, 412 LAZ files, 2.6 billion points) [46]

Common Geospatial Queries

When users work with a geospatial data set, they usually
have a certain goal in mind: they want to explore the data,
visualize it (or a subset of it), or perform some kind of
analysis. For this, users typically need a way to filter the
data set and to extract items based on certain criteria—i.e. to
perform queries on it—in order to focus on the information
that is actually necessary for the task at hand. The most
common geospatial queries are as follows:

• The users have to be able to extract data items based
on a given set of user-defined attributes (e.g. address,
number of floors, classification, heat demand).

• They also need to be able to retrieve all data items that
lie within a given bounding box (i.e. an axis-aligned
rectangular spatial area), for example for a visualization
or an in-depth analysis of smaller areas.

For the experiments we present in the “Querying Building
Data” and “Querying Point Cloud Data” sections, we
formulated corresponding ad-hoc queries on the two types
of data. For the point clouds, we also defined a query
based on a dynamic property that can only be calculated
by analysing the data (i.e. the point density).

Implementation

The specific data formats of building models (CityGML)
and point clouds (LAS/LAZ) require different
techniques for parsing and interpreting. According to
which technologies are typically used in practice, we
implemented the experiments of our case study in two
different programming languages: Kotlin for the building
models and Rust for the point clouds.

Kotlin is a language based on the Java Virtual Machine.
The Java API is often used for building models because
of its sophisticated support for reading XML files. For
point clouds with their binary files containing millions or
billions of data items, it is often more reasonable to use a
low-level programming language like Rust, which provides
the developer with means to organize the memory layout
and to control when resources are allocated and released.

More details on the individual implementations are
given in the “Implementation” section on querying
building data and the “Implementation” section on point
clouds.

Fig. 2 Screenshots of the ca13 (PG &E Diablo Canyon Power Plant) point cloud data set [46] visualized in Potree [30] with photo-realistic RGB
coloring (left) and colors based on semantic classification (right)

SN Computer Science (2024) 5:647 Page 7 of 22 647

SN Computer Science

Experiment Setup

As described in the goals of our case study, we wanted to test
if ad-hoc queries can be performed on commodity hardware
of individual users instead of on large compute clusters. All
experiments were therefore conducted on a standard laptop,
a 16” MacBook Pro 2019 with a 2.6 GHz 6-Core Intel Core
i7 CPU, a 1 TB SSD hard disk, 32 GB of RAM, and macOS
12.

We executed each ad-hoc query five times, recorded the
time taken each, and then calculated the median as well as
the standard deviation. In order to get consistent results, we
also used the shell commands sync and purge on macOS to
flush the disk page cache prior to every run. The run times
of these commands were not included in the measured time.

Since the program for the building experiments was
written in Kotlin, we also performed two initial runs
there (prior to the five main runs) to allow the just-in-
time compiler (JIT) to warm-up. These runs were also not
included in the median and standard deviation.

Querying Building Data

This section describes how we performed ad-hoc queries
on building data stored in the XML-based CityGML file
format. First, we introduce our basic approach (“Executing
Ad-Hoc Queries on Building Data” section) and give some
implementation details (“Implementation” section). We then
present the results of the conducted experiments (“Building
Experiments” section) and compare them with existing
solutions (“Comparison with Existing Solutions” section).
Finally, we present an approach to speed up the search for
bounding boxes using progressive indexing (“Progressive
Bounding Box Index Generation” section).

CityGML defines various modules covering a large
number of object types that can appear in an urban
environment (e.g. buildings, bridges, street furniture,
railways). We focus on the core and the building module
which address generic geometries and attributes as well as
building models.

Executing Ad‑Hoc Queries on Building Data

The classic approach to work with XML is to parse the
file into memory and interpret the elements according to
the schema. However, building a document object model
(DOM) for a data set that is potentially several gigabytes
large is impractical, and parsing the entire XML structure
just to match a few attributes and extract a subset of objects
is too much of an overhead. Instead, our approach is purely

textual. It is based on a fast string matching algorithm and
a simple but effective way to extract individual building
models from the CityGML data set.

The following subsections describe operations that
build upon each other and pose challenges with increasing
difficulty to the query system. The most basic operation on
textual data is free text search. Our assumption is that if you
are able to find an arbitrary string in the data set (“Extracting
Objects Based on Arbitrary String Matches” section), you
should also be able to identify key-value pairs (“Searching
for Key-Value Pairs” section) and to perform more advanced
value comparisons (“Advanced Key-Value Queries” section).
In turn, being able to find key-value pairs is a prerequisite
to retrieving objects by bounding box (“Bounding Box
Queries” section). Finally, multiple queries can be combined
using logical operators (“Combining Multiple Queries”
section).

Extracting Objects Based on Arbitrary String Matches

The first step in our approach is to search the data set
for an arbitrary string. For this, we implemented Raita’s
enhancement to the Boyer–Moore–Horspool fast string
searching algorithm [11] (see also “Searching Text Data”
section).

The main idea is as follows: if you can quickly identify a
byte position pi of what you are looking for in the data set,
you can then create two cursors c1 and c2 that search the file
from pi backward and forward to find the start and the end
of the XML element to extract respectively.

Figure 3 depicts this procedure. pi points to the matched
string “Empire State Building”. Cursor c1 searches the data
set backward from pi − 1 to pi − n until it finds the start of
a building. In CityGML, this is the “cityObjectMember”
tag. Cursor c2 searches forward until the end of the building
denoted by the closing “cityObjectMember” tag.

Note that this idea is simple and very fast (see results in
the “Building Experiments” section) but its simplicity comes
with a caveat: It does not check if the search string actually
is an attribute (or an attribute value). You can literally search
for anything. Even the XML tag name “Building” would
work. It would simply match all buildings in the whole
data set. Additional checks are needed to make the query
results more precise. Our approach therefore also supports
searching for key-value pairs.

Searching for Key‑Value Pairs

Generic attributes in CityGML are described with
the elements “str ingAttr ibute”, “intAttr ibute”,
“doubleAttribute”, etc. The elements have a “name” and a
child element called “value”. Based on the idea described

 SN Computer Science (2024) 5:647 647 Page 8 of 22

SN Computer Science

above, there are two approaches to identify key-value pairs
(i.e. matching generic CityGML attributes):

• you can either search for the string representing the
value, check if the match actually is a CityGML value,
then move backward to find the corresponding parent
element, extract its name, and finally compare it with the
key you are looking for (see Fig. 4), or

• you can search for the string representing the key, check
if the match belongs to a generic attribute, move forward
to find its value, and then compare it with the value you
are looking for (see Fig. 5).

In case of a positive match, you then have to extract the
building as described above.

Both approaches have benefits and drawbacks. For
example, a very specific value (e.g. “Empire State
Building”) might only occur once or a few times in a large
data set, whereas the key (e.g. “ownername”) most probably
appears as many times as there are buildings in the data set.

In such a case, it can be faster to search for the value first
to avoid unnecessary comparisons and to directly jump to
the buildings to extract instead. Nevertheless, as we show
in the “Building Experiments” section, these comparisons
actually do not have a large performance impact, and
searching for the key first is interestingly almost as fast as
searching by value. It also provides the additional benefit
that you can compare the value not only literally but also
parse numbers, apply greater than or less than comparisons,
etc. This flexibility is necessary for more advanced queries.

Advanced Key‑Value Queries

As soon as you have found a CityGML generic attribute
by key and extracted its value, you can perform advanced
comparisons. The following list gives a few example
comparisons that are possible with our approach:

• Convert the value to a number and check if it is less than
or greater than the value you are looking for (e.g. to get
all buildings that have more than n storeys)

• Compare the converted number to a numerical range (e.g.
to find all buildings within a given zip code range)

• Compare the value to a set (e.g. to get all buildings whose
“usage” is either “commercial” or “domestic”)

Based on the result, you then have to extract the building
as described above. We have implemented these example
comparisons and evaluated their performance (see “Building
Experiments” section).

Bounding Box Queries

Searching for buildings whose geometry is covered by
a given bounding box is more complex than looking for
attributes. In the case of CityGML, you have to iterate
through the entire geometry of a building and compare its
coordinates with the bounding box.

Figure 6 shows an example of a building geometry. The
coordinates (more precisely, the x–y–z tuples) can be found

Fig. 3 General approach to
search in a text file and extract
a CityGML building contain-
ing the match at position pi and
ranging from pi − n to pi + m
(Image source: [8])

 ...
</bldg:Building>

</core:cityObjectMember>
<core:cityObjectMember>
<bldg:Building gml:id="gml_3KRIUGY6STPLF365ORLR3PIJGYUD5FM57NAB">
<gml:name>Bldg_12210009096</gml:name>

 ...
<gen:stringAttribute name="ownername">
<gen:value>Esrt Empire State Building, l.l.c.</gen:value>

</gen:stringAttribute>
<gen:stringAttribute name="lotarea">
<gen:value>91351</gen:value>

</gen:stringAttribute>
 ...
</bldg:Building>

</core:cityObjectMember>
<core:cityObjectMember>
<bldg:Building gml:id="gml_I0F7CFHURP1IVUBZ74UEN10YGMWKBB29M48P">

 ...

Empire State Building,pi

<core:cityObjectMember>pi - n

</core:cityObjectMember> pi + m

c1

c2

 ...

<gen:stringAttribute name="ownername">

<gen:value>Esrt Empire State Building, l.l.c.</gen:value>

</gen:stringAttribute>

 ... pi

Empire State Buildingvalue

stringAttribute name="ownername"

Fig. 4 Search by value, then skip backward to extract and compare
key (Image source: [8])

 ...

<gen:stringAttribute name="ownername">

<gen:value>Esrt Empire State Building, l.l.c.</gen:value>

</gen:stringAttribute>

 ...

pi

Empire State Buildingvalue

stringAttribute name="ownername"

Fig. 5 Search by key, then skip forward to extract and compare value
(Image source: [8])

SN Computer Science (2024) 5:647 Page 9 of 22 647

SN Computer Science

in the “gml:posList” element. A geometry typically has more
than one of such elements. Our approach here is to look for
the string “gml:posList” first, then extract the tuples one by
one, convert their items to floating point numbers, and com-
pare them with the bounding box. This has to be repeated
for all “gml:posList” elements found inside the building. As
soon as a tuple is not within the bounding box, the corre-
sponding building can be skipped. However, if all tuples are
in the bounding box, the building is extracted as described
above.

Note that there are other geospatial relations besides
covers, such as intersects, touches or overlaps [52]. We have
already discussed intersects in our previous work [8]. We
did not implement other relations because they require more
computational effort and it is not possible to skip individual
tuples.

Combining Multiple Queries

Multiple queries can be combined using logical operators.
We implemented the following two operators:

OR
There are two ways to find buildings that match at least

one of a given set of criteria. As described in the “Advanced
Key-Value Queries” section, for criteria that refer to the
same key, you can compare the found values to a range or
a set. For all other criteria, you have to perform the search
multiple times (once for each criterion) and then combine
the results by creating their union.

AND
Finding buildings that match all given criteria at the

same time works differently. In this case, you initially have
to find a building that matches the first criterion. Then, you
have to repeat the search for each other criterion but only
within the byte range from pi − n to pi + m representing
the beginning and the end of the building respectively (see

“Extracting Objects Based on Arbitrary String Matches”
section). The whole query matches if all individual searches
are successful.

Implementation

We implemented our approach in a single command line
application written in Kotlin (running on the Java Virtual
Machine JVM). For reference, we released it under an open-
source license and made it available on GitHub [53].

Our application supports searching a single file
(sequentially) or multiple files (in parallel) using multiple
threads (one per file). It has two modes: In the default
mode, it performs a single search and then prints the
extracted buildings to standard out. The benchmark mode
runs multiple searches (including a warm up phase) and
does not print extracted buildings. It keeps them in memory
per search, collects metrics (such as number of buildings
extracted, number of search hits and misses, etc.), and prints
statistics at the end. We used the benchmark mode for our
experiments and recorded the statistics. The results are
described in the following section.

Building Experiments

We used the enhanced New York 3D Building Model as test
data set (see “Data Types” section). All experiments were
conducted on a MacBook (see “Experiment Setup” section).
We ran each ad-hoc query two times: Once on a single
file, and another time on the whole data set. As described
above, our application searches a single file sequentially, but
multiple files in parallel. For the whole data set, up to 12
threads (the maximum for CPU of our MacBook) were used.

The following sections give the results of each experiment
conducted.

Fig. 6 Example of a
“gml:posList” element from a
geometry of a CityGML build-
ing (Image source: [8])

<core:cityObjectMember>
<bldg:Building gml:id="gml_3KRIUGY6STPLF365ORLR3PIJGYUD5FM57NAB">
<gml:name>Bldg_12210009096</gml:name>

 ...
<bldg:boundedBy>

<bldg:GroundSurface gml:id="gml_52V6693CTPWOCJXNI9UOBIB6WVANHUN135AW">
 ...

<bldg:lod2MultiSurface>
<gml:MultiSurface srsName="EPSG:2263" srsDimension="3">

<gml:surfaceMember><gml:Polygon><gml:exterior><gml:LinearRing>
<gml:posList>

 988042.890040159 212057.351853728 39.1315999999933
 988086.798744991 212136.782797232 39.1315999999933
 988105.85480924 212126.249025643 39.1315999999933
 ...

</gml:posList>
</gml:LinearRing></gml:exterior></gml:Polygon></gml:surfaceMember>

</gml:MultiSurface>
</bldg:lod2MultiSurface>

</bldg:GroundSurface>
</bldg:boundedBy>

 ...
</bldg:Building>

</core:cityObjectMember>

pi

g g yg g g
<gml:posList>
 988042.890040159 212057.351853728 39.1315999999933
 988086.798744991 212136.782797232 39.1315999999933
 988105.85480924 212126.249025643 39.1315999999933
 ...

i

 SN Computer Science (2024) 5:647 647 Page 10 of 22

SN Computer Science

Experiment 1: Search by Free Text

Our first experiment was to find the Empire State Building
in the data set. For this, we applied the approach described
in the “Extracting Objects Based on Arbitrary String
Matches” section and were able to extract a single object.
Table 1 shows the measured times of the runs with the single
file and the whole data set. The column “Hits” shows how
many buildings were extracted. “Misses” denotes how many
locations of the search string were identified but did not lead
to an extraction. Since the string “Empire State Building”
only appears once in the whole data set, there were no such
cases. As we show below, this column is more relevant in
the other experiments (e.g. when we find a matching value
but the key is different). The column “Bldgs/s” shows how
many buildings were processed per second.

The SSD in the MacBook Pro is fast enough so the single
736.3 MiB file can be searched within 400 milliseconds.
The whole 20.91 GiB data set can even be processed within
6.50 s. Note that multi-threading does not speed up I/O
performance here but allows the string searching algorithm
to work in parallel with reading new data, which increases
the number of buildings processed per second from 60,095
to 166,683.

Experiment 2: Search for Key‑Value Pairs

In this experiment, we evaluated the performance of key-
value queries. We first searched the data set for build-
ings whose attribute “ownername” equals “Empire State
Building”. Since there is only one such building in the
entire data set, we also performed another query where
we extracted all buildings with a “zipcode” of “10019”

(Manhattan). As described in the “Searching for Key-
Value Pairs” section, there are two ways to search for key-
value pairs: search by value first, and search by key first.
Both strategies have benefits and drawbacks and might
yield different performance. We therefore executed both
queries with both strategies. Table 2 shows the results for
the two queries and the two strategies applied to the single
file and the entire data set.

The results of the by-value search for the Empire State
Building are comparable to the ones from the previous
experiment. The queries execute slightly slower because
in addition to finding the string “Empire State Building”,
the key of the generic attribute has to be extracted and
compared to “ownername”. The by-key searches are also
still very fast. Even though the key “ownername” appears
1,082,659 times in the whole data set and only one value
matches “Empire State Building”, the strategy is only less
than 200 milliseconds slower than the by-value strategy.

Searching by value first appears to be faster than the
by-key strategy but this only applies to cases like this
where the search string does not appear very often in the
data set. If we look at the results of the second query, we
can see that the by-value strategy is much slower than the
by-key strategy. The reason for this is not directly obvious.
The string “10019” appears 352,527 in the whole data and
“zipcode” appears 1,083,188 times. It seems a lot more
checks need to be done when “zipcode” is the search
string. However, the by-value strategy—as described in
the “Searching for Key-Value Pairs” section—relies on
checking if the search string actually is a value of a generic
attribute and on extracting its key. If the search string is not
a value of a generic attribute but part of a “gml:posList”
element, for example, a large portion of the file needs to
be searched backward for the string “gen:value”, which
is time-consuming. The performance of searching by
key first, on the other hand, is more predictable and—
compared to the free text search—still very fast.

Table 1 Results of building Experiment 1 (search by free text)

Query Files Run time (s) Hits Misses Bldgs/s

“Empire State
Building”

Single 0.40 ± 0.01 1 0 60,095

All 6.50 ± 0.14 1 0 166,683

Table 2 Results of building
Experiment 2 (Search for key-
value pairs)

Query Strategy Files Run time (s) Hits Misses Bldgs/s

“ownername” = “Empire
State Building”

By value Single 0.43 ± 0.03 1 0 55,902
By key Single 0.52 ± 0.04 1 23,993 46,227
By value All 6.52 ± 0.03 1 0 166,171
By key All 6.74 ± 0.02 1 1,082,658 160,747

“zipcode” = “10019” By value Single 9.53 ± 0.03 1179 29,520 2522
By key Single 0.96 ± 0.03 1179 22,844 25,040
By value All 23.54 ± 0.28 1196 351,331 46,025
By key All 6.71 ± 0.04 1196 1,081,992 161,466

SN Computer Science (2024) 5:647 Page 11 of 22 647

SN Computer Science

Experiment 3: Advanced Key‑Value Queries

As described in the “Advanced Key-Value Queries” section,
searching by key first and then extracting its value allows
for more advanced operations such as less than and greater
than comparisons or range checks. In this experiment, we
performed three different queries: we searched for buildings
with at least four storeys (i.e. where the attribute “numfloors”
is greater than or equal to 4), buildings that are located in
areas with a zip code between 10018 and 10020 (inclusive),
as well as buildings classified as factories (i.e. where the
attribute “bldgclass” starts with the letter “F”, which stands
for ‘factory’ according the list of building classifications
of the City of New York [54]). The results are shown in
Table 3.

Compared to the key-value searches from the previous
experiment, the queries execute slightly slower because
converting and comparing the values takes more time.
Finding buildings with at least four storeys is the slowest of
all three queries because it yields the most hits. Extracting
buildings is therefore rather time-consuming. The search
for buildings within a zip code range yields similar results
as the zip code query from the previous experiment, which
suggests that the range comparison affects performance only
slightly.

Experiment 4: Search by Bounding Box

In the geospatial domain, a bounding box is typically speci-
fied by four ordinates (minimum X, minimum Y, maximum
X, and maximum Y). In this experiment, we performed two
queries and searched the data set for all buildings that are
covered by the bounding boxes (987,700, 211,100, 987,900,
211,300) and the much larger one (950,000, 210,000,

1,000,000, 220,000). Since our application does not support
conversion between different spatial reference systems, the
query must be specified in the same reference system as the
coordinates in the data set (EPSG 2263, US feet).

Table 4 shows that bounding box queries are considerably
slower than the queries from the previous experiments. The
reason for this is that a large number of coordinates need
be extracted and compared. As described in the “Bounding
Box Queries” section, our application only supports finding
buildings that are covered by a given bounding box, which
helps us skip buildings as soon as we find a coordinate
outside the bounding box. However, buildings whose
coordinates are all covered by the bounding box, need to be
processed completely. The performance of bounding box
queries therefore highly depends on the data and how many
buildings actually match.

Experiment 5: Logical AND

In order to evaluate if multiple queries can be combined, we
also searched the data set for buildings within a given zip
code range and with at least four storeys. Table 5 shows the
results of this experiment.

As described in the “Combining Multiple Queries” sec-
tion, our application executes queries with multiple criteria
by searching for a building that matches the first criterion
and then searching this building again to evaluate if the
other criteria also match. This is reflected in the table by the
additional column “1st hits”, which denotes the number of
buildings that matched the first criterion. The column “Hits”
shows the final number of buildings extracted, whereas
“Misses” gives the number of buildings that contained the

Table 3 Results of building
Experiment 3 (Advanced key-
value queries)

Query Files Run time (s) Hits Misses Bldgs/s

“numfloors” ≥ 4 Single 3.59 ± 0.40 18,947 5048 6696
All 9.84 ± 0.34 76,533 1,006,142 110,105

10018 ≤ “zipcode” ≤ 10020 Single 0.96 ± 0.11 1821 22,202 25,040
All 6.75 ± 0.03 1838 1,081,350 160,509

“Bldgclass” starts with “F” (Factory) Single 0.49 ± 0.02 69 23,927 49,057
All 6.65 ± 0.06 4167 1,078,514 162,923

Table 4 Results of building
Experiment 4 (search by
bounding box)

Query Files Run time (s) Hits Misses Bldgs/s

Bounding box covered
by (987,700, 211,100,
987,900, 211,300)

Single 0.66 ± 0.02 2 609,517 36,421
All 6.76 ± 0.15 2 12,965,392 160,272

Bounding box covered
by (950,000, 210,000,
1,000,000, 220,000)

Single 3.25 ± 0.07 9790 309,304 7396
All 6.96 ± 0.07 10,763 12,644,194 155,666

 SN Computer Science (2024) 5:647 647 Page 12 of 22

SN Computer Science

search string of the first criterion but where the value did
not match.

The results of this experiment indicate that the perfor-
mance of multi-criteria queries depends on the order of the
criteria. Searching for buildings within a certain zip code
range first and then comparing the number of floors is faster
than the other way round because, in the entire data set,
there are less buildings in the zip code range than there are
buildings with at least four storeys (which is reflected by the

lower number of 1st hits). Since our application is not able
to predict the outcome of such a query and therefore cannot
automatically optimize the order of criteria, it is up to the
user to contribute this knowledge and to specify the query
accordingly.

Comparison with Existing Solutions

In this section, we compare the results collected above with
two existing database-driven solutions 3DCityDB 4.1.0
(with Importer/Exporter 4.3.0) and GeoRocket (latest 2.0
alpha version from October 2022). For better comparability,
we configured both solutions to use PostgreSQL as backend.

Table 6 shows the times it took to import the data into
both applications. With 3DCityDB, this process took about
two and a half hours for the whole data set. To speed up
the queries later, we also had to manually create additional
database indexes on the database relation cityobject_generi-
cattrib containing the semantic attributes. This took another

Table 5 Results of building
Experiment 5 (logical AND)

Query Files Run time (s) 1st hits Hits Misses Bldgs/s

(10018 ≤ “zipcode” ≤
10020 AND “num-
floors” ≥ 4)

Single 1.11 ± 0.03 1821 1538 22,485 21,656
All 6.80 ± 0.06 1838 1549 1,081,639 159,329

(“numfloors” ≥ 4
AND 10018 ≤ “zip-
code” ≤ 10020)

Single 2.97 ± 0.03 18,947 1538 22,457 8094
All 7.38 ± 0.04 76,533 1549 1,081,126 146,807

Table 6 Times it took to import the 3D building model into 3DCi-
tyDB and GeoRocket

Files 3DCityDB GeoRocket

Import Single 2 m 25 s 1 m 12 s
All 2 h 37 m 29 s 1 h 00 m 18 s

Create additional
indexes

Single 12 s –

All 2 m 49 s –

Table 7 Results of executing the example queries using 3DCityDB and GeoRocket

Run times of ad-hoc queries have been copied from above for comparison. Fastest times set in bold

Query Files Run time (s) 3DCityDB Run time (s) GeoRocket Run time (s) Ad-hoc

“ownername” = “Empire State Building” Single 0.92 ± 0.02 0.05 ± 0.01 0.52 ± 0.04
All 0.98 ± 0.07 0.05 ± 0.00 6.74 ± 0.02

“zipcode” = “10019” Single 2.42 ± 0.07 0.30 ± 0.01 0.96 ± 0.03
All 2.52 ± 0.11 0.30 ± 0.01 6.71 ± 0.04

“numfloors” ≥ 4 Single 15.31 ± 0.46 4.85 ± 0.09 3.59 ± 0.40
All 97.53 ± 10.26 7.58 ± 0.68 9.84 ± 0.34

10018 ≤ “zipcode” ≤ 10020 Single 3.19 ± 0.03 3.77 ± 0.17 0.96 ± 0.11
All 15.74 ± 0.48 2.70 ± 0.02 6.75 ± 0.03

“bldgclass” starts with “F” (Factory) Single 1.17 ± 0.01 0.09 ± 0.01 0.49 ± 0.02
All 4.36 ± 0.33 2.54 ± 0.03 6.65 ± 0.06

Bounding box covered by (987,700, 211,100, 987,900,
211,300)

Single 0.88 ± 0.00 0.05 ± 0.01 0.66 ± 0.02
All 0.89 ± 0.01 0.05 ± 0.00 6.76 ± 0.15

Bounding box covered by (950,000, 210,000, 1,000,000,
220,000)

Single 9.28 ± 0.55 1.67 ± 0.01 3.25 ± 0.07
All 11.46 ± 0.67 1.61 ± 0.03 6.96 ± 0.07

(10018 ≤ “zipcode” ≤ 10020 AND “numfloors” ≥ 4) Single 2.98 ± 0.04 5.32 ± 0.06 1.11 ± 0.03
All 28.50 ± 3.06 2.66 ± 0.03 6.80 ± 0.06

(“numfloors” ≥ 4 AND 10018 ≤ “zipcode” ≤ 10020) Single 3.01 ± 0.03 6.18 ± 0.24 2.97 ± 0.03
All 28.44 ± 7.78 2.01 ± 0.05 7.38 ± 0.04

SN Computer Science (2024) 5:647 Page 13 of 22 647

SN Computer Science

couple of minutes. Although GeoRocket was considerably
faster, importing still took about an hour.

Table 7 shows the measured times for performing the
individual queries. Note that we copied the run times of the
ad-hoc queries from above into the last column for better
comparison. The fastest times are highlighted in bold.
Also note that the Importer/Exporter tool from 3DCityDB
measures the time an operation took in seconds and cuts
off the fractional digits, which was too imprecise for our
purposes. We therefore had to compile the tool ourselves to
print out milliseconds.

As mentioned in the “Implementation” section, the
program we implemented for the ad-hoc queries does not
write extracted buildings to a file in benchmark mode. To
avoid that writing to disk affected the results of GeoRocket,
we redirected its HTTP responses to /dev/null. Similarly,
since the 3DCityDB exporter only supports file output, we
created an in-memory file system and let it write to this.

Before measuring the run times, we verified that each
query returned the same number of buildings in 3DCityDB,
GeoRocket, as well as with the ad-hoc approach. The only
difference we noticed was with the two bounding box
queries. While GeoRocket and 3DCityDB find buildings
based on the intersection of bounding boxes, our approach
only finds those that are completely covered by the bounding
box to look for. The ad-hoc implementation therefore returns
less buildings (i.e. a subset of those returned by GeoRocket
and 3DCityDB). In order to get the same results, the
buildings returned by GeoRocket and 3DCityDB would have
to be filtered in a post-processing step.

GeoRocket does not support searching for attribute values
that start with a given string. We therefore had to emulate
the query regarding the building class by a comparison with
all nine classes F1,… ,F9 defined in the list of New York
building classifications [54]. In addition, since all attributes
in the data set are stored as strings and 3DCityDB does not
support automatic type conversion, we had to specify an
SQL query that performs an explicit type cast.

Table 7 shows that, in almost all cases, GeoRocket was
the fastest solution. Nevertheless, ad-hoc queries were on
par, sometimes even beating GeoRocket. They were also
in many cases faster than 3DCityDB. This applied to most
of the single-file queries but particularly to the queries
regarding the number of floors, the zip code range, as well
as the boolean combinations thereof. The bounding box
queries, however, were faster in 3DCityDB and GeoRocket
because of their spatial indexes. Our approach to compare
coordinates from gml:posList elements is not very efficient.
There is room for improvement here. Nevertheless,
3DCityDB was still very slow for the larger bounding box
where a greater number of buildings needed to be extracted.

To summarize, ad-hoc queries performed very well
in general. They achieved times that were reasonable for

practical use cases and comparable to those of the other
solutions. In particular, they allowed us to directly work
with the data without having to wait several hours for it to
be imported into a database.

Progressive Bounding Box Index Generation

The previous section has shown that the ad-hoc approach is
practical but database-driven solutions are still considerably
faster when performing bounding box queries. With ad-hoc
queries, all coordinates of a building have to be converted
to numbers and compared with the bounding box. An index
can speed this up.

In the “Related Work” section, we have discussed existing
dynamic indexing approaches such as Database Cracking
[39] and Progressive Indexing [40], which build an index
on-demand and step by step. These approaches provide a
good balance between unindexed and indexed queries.

To build upon this idea, in this section, we combine
progressive indexing with our ad-hoc bounding box search.
For this, we incrementally create an index and use it to speed
up later queries. The concrete procedure is now as follows:

1. If there already is a (probably incomplete) index, use it
to search for matching buildings

2. Search for buildings in the not yet indexed areas of the
CityGML file using the ad-hoc approach

3. Expand the index

The index is a linked list with one entry per indexed
building. An entry contains the bounding box as well as the
first and last byte position of the building in the CityGML
file. To add a building to the index, we calculate the center of
its bounding box and convert it to Morton code [55, 56] with
a fixed number of bits (which translates to a fixed coordinate
precision). Morton code defines a space-filling curve (also
known as Z-order curve), which allows us to sort the index
entries and create a one-dimensional binary search tree.

To use the index for a query, we determine the Morton
codes for the lower left and the upper right corners of
the bounding box to search for. Using binary search, we
then identify all entries in the index whose Morton code
lies between these two. They are candidates for hits. Due
to the fixed bit size of the Morton code and the structure
of the space-filling Z-order curve, it is possible that more
candidates are found than there are actual hits. Furthermore,
it is not guaranteed that the entire geometry of a candidate
lies within the searched bounding box. After the binary
search, we therefore traverse all candidates and filter out
those that do not match.

Each time the user executes a bounding box query, the
index is enlarged. The first query completely uses the ad-
hoc approach since there is no index yet. However, the first

 SN Computer Science (2024) 5:647 647 Page 14 of 22

SN Computer Science

2000 buildings in the CityGML file are parsed and put into
the index. The second query tries to make use of the exist-
ing (most likely partial) index to find the first matches. It
then performs a new ad-hoc query starting from the byte
position after the last indexed building in the CityGML file.
At the end of the second query, the next 2000 buildings are
indexed, so the index contains 4000 entries and more bytes
can be skipped in upcoming queries. This process continues
until the whole file has been indexed, in which case ad-hoc
queries are not needed anymore. The number 2000 has been
chosen empirically and could, in future implementations, be
made dynamic or be based on a time budget for example.

Figure 7 shows the run times of several sequential
queries for the bounding box (950,000, 210,000, 1,000,000,
220,000) on a single file of our test data set, similar to the
experiment performed in the “Experiment 4: Search by
Bounding Box” section but with a progressive index. We
executed 20 sequential queries five times and plotted the
median run times. At the beginning, a query with index
(shown in red) is slower than the pure ad-hoc query (blue).
This is because, in the first query, the index for the first

2000 buildings is generated, which leads to additional effort.
The same applies to the following queries, even though the
process becomes continuously faster, since larger parts of
the file have already been indexed. After three queries, the
variant with the index becomes faster than without. This
point strongly depends on the number of indexed buildings.
If more buildings are indexed per query, then the first queries
are even slower, but the index plays out its advantages more
quickly. On the other hand, fewer indexed buildings per
query lead to a lower overhead at the beginning, and the
index provides its performance benefit at a later point.

The 13th query is significantly faster than the previous
one. This can be explained by looking at the distribution
of the computing time (see Fig. 8). At this point, the entire
file has been indexed. This means that no further computing
time has to be used for indexing. In addition, writing the
index file can be skipped after the 13th query since it does
not change anymore.

This experiment shows that a progressive index can
be beneficial for ad-hoc searches. It combines fast initial
search with the advantages of an index and represents a

Fig. 7 Median run times (with
standard deviations) of sequen-
tial queries for the bounding box
(950,000, 210,000, 1,000,000,
220,000) on a single file. Red
bars represent the run times of
queries with progressive index-
ing, blue bars represent those of
ad-hoc queries

Fig. 8 Composition of the run
time when using an index. In
the first queries, a lot of ad-hoc
search is necessary. Later, more
search is done using the index.
After the 13th query, the whole
file is indexed and no ad-hoc
search is needed anymore

SN Computer Science (2024) 5:647 Page 15 of 22 647

SN Computer Science

compromise between the pure ad-hoc query and the use of a
database-based system. In the future, we would like to build
on these results and further explore progressive indexes for
geospatial applications.

Querying Point Cloud Data

In this section, we illustrate our approach to conducting
queries on raw point cloud data files. We first go over the
general experiment setup and its differences with regard
to the building queries. We then show some optimizations
specific to point clouds, which we implemented to speed
up the query process. Lastly, we show the results of all
conducted point cloud queries and discuss them.

Executing Ad‑Hoc Queries on Point Cloud Data

Compared to a textual search, since point cloud data is
typically binary, each point in every file of the source data
set has to be examined and compared according to the query
parameters. This necessitates the following steps:

1. Loading the appropriate bytes that make up the point
from the input file(s) into main memory

2. Converting the binary representation into an internal
point representation that the query application can work
with

3. Applying the query to the internal point representation
to decide if the point is a match or not

The expected performance of the first two steps largely
depends on the file format of the point cloud. Step 1 (loading
the bytes) will be slower the more bytes a single point takes
in a given file format. In that regard, a compressed file
format will be faster to read from than an uncompressed
file format, as a single point on average requires less
bytes in the compressed format. Step 2 (converting the
bytes to an internal point representation) will be faster
the more closely the binary layout of a point in a given
file format matches the binary layout of the internal point
representation in memory. Here, compressed file formats are
at a disadvantage, since the data first has to be decompressed
before it can be converted to the internal representation.
However, even uncompressed file formats can require some
data transformations. As an example, the LAS file format
stores point coordinates as normalized integer coordinates,
often in a local coordinate system based on the bounding
box of the file. Most applications use floating-point values
for coordinate representation, so parsing LAS requires a
conversion from normalized integer coordinates to floating-
point values in world space.

The last step, applying the actual query to the internal
point representation, is mostly independent of the file format
and is executed through a linear search. Algorithmically, this
search could only be sped up if the point data were already
sorted based on the primary key of the query. In practice,
this is highly unlikely since the point order is mainly dictated
by the capturing process. Furthermore, even if the points
were sorted by a single attribute, such as their classification,
this order would be useless in speeding up a query based on
a different attribute. This situation is very well understood
in the context of database management systems (DBMSs)
and has been covered in the literature for point cloud data
by various authors [36, 37].

The goal of this case study is to identify scenarios in
which ad-hoc queries on point cloud data can be conducted
sufficiently fast to facilitate certain user interactions. Thus,
we are aiming at the lowest possible run times for these
queries. The two major factors that impact run time are the
file format as shown above and data throughput. We propose
performance optimizations for both areas and evaluate them
in the following sections.

Implementation

For the point cloud experiments, all queries were conducted
using a single command line application written in Rust. For
reference, we released it under an open-source license and
made it available on GitHub [57].

Since the used file formats are binary formats, we use
memory-mapped files for best I/O performance. In contrast
to the building models scenario, the amount of information
in a single point is small, so the main factor for query
performance becomes the point throughput, i.e. how many
points the application can inspect in a given time. Where
possible, we executed the query in parallel, inspecting one
file per logical core on the target machine, similar to our
implementation of the building data query.

The expected number of positive results from a point
cloud query can be several orders of magnitude larger than
the results from a query on building models. Gathering
the matching points thus has a larger impact on query
performance than gathering building data. Additionally,
some queries might end up with so many matching
points that the result would not fit into main memory.
To still get reasonable performance measurements, we
simulate the gathering process through a polymorphic
ResultCollector type with different implementations
that either count the number of matching points, print them
to the standard output, or store them in an in-memory
buffer. The ResultCollector interface expects a
point structure containing all attributes for a single point.
It is called once for each matching point, regardless of the
underlying implementation. This way, we can simulate

 SN Computer Science (2024) 5:647 647 Page 16 of 22

SN Computer Science

the process of extracting the necessary information for
each matching point independently of any target format or
application. Measuring the run time of a query using this
approach gives a good measure of the time that finding and
extracting the relevant points from the source files takes.

Optimizations

To keep query run times to a minimum, efficient point
cloud formats are necessary. At the same time, there is
little flexibility from a practical point of view in coming
up with new, exotic file formats. The LAS file format and
its compressed variant LAZ are by far the most common
formats for storing point cloud data captured from a LiDAR
(light detection and ranging) scanner. LAS is a standardized
binary format that stores point records in an interleaved,
fixed-size format. Each point entry in an LAS file has the
same size and stores all attributes, such as position, intensity
or classification, together in memory. Using this format, it
is possible to skip over all bytes that do not belong to the
attribute that is queried. Together with memory mapped
files, this reduces the amount of work for converting to the
internal point format to a minimum.

Special care has to be taken for queries on LAS data based
on positions because of the normalized integer coordinates
that LAS uses internally. The typical behavior of libraries and
tools that read LAS data is to first convert from normalized
integer coordinates into floating-point coordinates in world
space using the offset and scale parameters in the LAS
header. For bounding box queries, there is a more efficient
way to do this. Instead of transforming each point into world

space, the bounding box can be transformed into normalized
integer coordinates once and checked against the integer
coordinates. Only for a matching point do we then have to
perform the transformation to world space.

For the LAZ file format, there is little potential for
optimization. The compression scheme used in LAZ, a form
of run-length encoding with a different encoding scheme
for each attribute, is computationally expensive. The LAZ
format, while being widely used in the industry, has never
been officially standardized. We therefore investigated if
it would be worthwhile to use an alternative compression
scheme to achieve better performance. We chose the
LZ4 compression algorithm [58] for this due to its good
decompression performance.

We developed and tested the following variants of the
LAS file format:

• LAST, an LAS variant where the memory layout is
transposed so that data is stored attribute-wise instead
of point-wise

• LAZER, an LAS variant using the same memory layout
as LAST, but stored in blocks of a fixed number of points
where each block is compressed using LZ4, using one
compression context per attribute

The memory layout of these file formats is depicted in
Fig. 9. The main idea of the LAST format is to keep relevant
data for queries close together in memory. This is not a new
concept, formats such as 3D Tiles [59] use a similar memory
layout. While it would be possible to just compress a whole
LAST file using LZ4, this would prevent any form of random

Fig. 9 The memory layout of
points in the LAS, LAST and
LAZER file formats (Image
source: [8])

Fig. 10 Ad-hoc query process
for point clouds, consisting of
the four steps mapping into
memory (1), decompression
(2), converting to internal point
representation (3), and the final
query by attribute (4) (Image
source: [8])

SN Computer Science (2024) 5:647 Page 17 of 22 647

SN Computer Science

access. Instead, with the LAZER format, we tried to stay close
to the LAZ format and compressed the data in blocks of a fixed
number of points, where each block uses a unique compres-
sion context for each of the point attributes within the block.
Figure 10 illustrates the ad-hoc query process for point cloud
data in all four tested file formats.

On top of the file-based optimizations, we employ basic
parallelism by searching each file of the target data sets on a
separate thread. While this is far from an optimal scheduling
strategy due to differences in the file sizes, not all point cloud
file formats support trivial random access so that a single file
can be decoded by multiple threads.

Lastly, all of the tested file formats in this paper provide
bounding box information for their points. For the bounding
box queries, this allows for trivial culling of all files whose
bounding boxes do not intersect with the query bounding box.
Especially on large data sets made up of many small files, this
can lead to a substantial decrease in query execution time.

Point Cloud Experiments

We conducted three experiments for point cloud data:

• Querying point cloud data by bounding box
• Querying point cloud data by bounding box and density
• Querying point cloud data by object class

We converted all of our three point cloud data sets navvis3,
doc, and ca13 (see “Data Types” section) into each of the
formats LAS, LAZ, LAST, and LAZER, and ran each query
on every data set in every format.

As a reference for our queries, we also loaded all data
sets into a PostGIS database with version 3.1.3 using the
pgPointclouds extension with version 1.2.1. Data upload
was done using PDAL [60] with the default configuration
of grouping points into patches of size 400. Afterwards, we
manually created a spatial index on the patches. Table 8 shows
the time that this process took for the three test data sets.

Experiment 1: Bounding Box Query

In this experiment, we tried to simulate a scenario were points
are queried based on a 3D bounding box, so every point within
the bounding box has to be extracted from the data set. We
defined three bounding boxes with different sizes for each
data set, labeled S, L and XL. They were selected in a way so

that the S bounding box yields about 1% of the total points, L
yields about 25% of the total points, and XL equals the full data
set. For the PostGIS comparison, we used the same bounding
boxes but converted to polygons in 2D, since PostGIS with
the pgPointclouds extension does not support spatial queries
against 3D bounding boxes. We ran two different queries for
each bounding box, one for finding all intersecting patches
using the PC_Intersects routine, and one for finding every
intersecting point using the PC_Intersection routine.

Experiment 2: Bounding Box Query with Maximum Density

In this experiment, we used the same bounding boxes as in
experiment 1. However, we also added a maximum density
constraint d to the query result, which guarantees that there
will be at most one point per d3 cubic meters returned from
the query. We used a maximum density value of 0.1 for the
navvis3 data set, 25 for the doc data set, and 100 for the ca13
data set. The density constraint was applied through simple
grid-based sampling: space is divided into an even grid
where each grid cell has a side length equal to the maximum
density value d . Based on all points that fall into a grid cell,
only the closest one to the center of the cell is returned in the
query result. With this experiment, we simulated the typical
level-of-detail (LOD) approach through spatial subsampling
that was popularized by Scheiblauer [61] and Schütz [7].

Since there is no equivalent functionality for querying
points by maximum density in PostGIS using the
“pgPointclouds” extension, we did not conduct any PostGIS
queries for this experiment.

Experiment 3: Query by Object Class

In this experiment, we performed a query for all points
with a given object classification. We ran all queries twice,
once querying for objects with the object class building
(classification ID 6 as per the LAS standard), and once for
querying for an non-existing object class. We chose the
classification ID 19 for the non-existing object class, as
this ID was not present in any of the test data sets. Since
the navvis3 data set does not contain object classifications,
we conducted this experiment only for the doc and ca13
data sets. For the PostGIS comparison, we used the PC_
FilterEquals routine which has single-point granularity.

Point Cloud Results

The results of the three point cloud experiments are depicted
in Tables 9, 10, and 11 respectively. All tables show the
median run time in seconds for each query, as well as the
median point throughput, measured in million points per
second (Mpts/s). The point throughput is not the actual num-
ber of points inspected per second but rather obtained by

Table 8 Times it took to
import the point cloud data into
PostGIS

Data set Import time

navvis3 6 m
doc 1 h 58 m
ca13 7 h 34 m

 SN Computer Science (2024) 5:647 647 Page 18 of 22

SN Computer Science

dividing the number of points in a data set by the run time
of the query.

In all experiments, the compressed file formats LAZ
and LAZER are about an order of magnitude slower than
the uncompressed file formats LAS and LAST. This is
unsurprising, as the process of decompressing the data

is both computationally expensive and prevents skipping
over irrelevant data. Using a compression algorithm with
better decoding performance makes little difference, as
the comparison between the LAZ format and our LZ4-
compressed LAZER format shows. LAZER files achieve
a throughput that is between 0.84 and 2.03 times that of

Table 9 Results of point cloud Experiment 1

Point throughput is measured in million points per second (Mpts/s)

Experiment 1—Bounding Box query

Format Runtime (s) Throughput (Mpts/s)

S L XL S L XL

navvis3 LAS 3.52 ± 0.08 3.75 ± 0.11 4.45 ± 0.04 15.94 15.01 12.63
LAZ 17.45 ± 0.06 17.46 ± 0.04 17.45 ± 0.04 3.22 3.22 3.22
LAST 1.86 ± 0.04 2.63 ± 0.07 5.32 ± 0.11 30.22 21.34 10.57
LAZER 12.14 ± 0.06 13.20 ± 0.05 19.18 ± 0.09 4.63 4.26 2.93
PostGIS (patches) 0.01 ± 0.02 0.30 ± 0.08 1.21 ± 0.06 5486.89 190.45 46.46
PostGIS (points) 1.26 ± 0.01 39.95 ± 0.21 220.89 ± 7.59 44.49 1.41 0.25

doc LAS 0.39 ± 0.01 2.69 ± 0.07 9.87 ± 1.40 2200.12 317.56 86.54
LAZ 1.77 ± 0.03 18.14 ± 0.42 53.47 ± 0.60 482.49 47.08 15.97
LAST 0.37 ± 0.01 2.85 ± 0.13 8.36 ± 0.02 2337.68 299.12 102.10
LAZER 0.81 ± 0.03 11.45 ± 0.09 37.68 ± 0.80 1054.32 74.59 22.66
PostGIS (patches) 0.09 ± 1.05 5.91 ± 11.52 21.50 ± 38.45 9064.78 144.49 39.71
PostGIS (points) 18.99 ± 0.10 1023.41 ± 0.45 3771.85 ± 4.23 44.97 0.83 0.23

ca13 LAS 1.02 ± 0.01 6.18 ± 0.05 44.53 ± 1.42 2552.66 421.99 58.57
LAZ 5.44 ± 0.08 39.27 ± 0.35 194.20 ± 2.60 479.41 66.41 13.43
LAST 0.90 ± 0.01 5.18 ± 0.18 36.89 ± 0.24 2884.43 503.77 70.70
LAZER 3.67 ± 0.10 34.70 ± 0.40 155.00 ± 4.90 719.63 75.16 16.83
PostGIS (patches) 1.07 ± 0.40 14.90 ± 5.78 132.05 ± 1.83 2436.96 175.01 19.75
PostGIS (points) 192.47 ± 2.40 2662.58 ± 30.68 13,578.03 ± 77.63 13.55 0.98 0.19

Table 10 Results of point cloud
Experiment 2

Point throughput is measured in million points per second (Mpts/s)

Experiment 2—Bounding box query with max. density

Format Runtime (s) Throughput (Mpts/s)

S L XL S L XL

navvis3 LAS 3.61 ± 0.08 4.05 ± 0.16 7.17 ± 0.07 15.56 13.86 7.84
LAZ 17.30 ± 0.10 17.80 ± 0.10 17.90 ± 0.10 3.25 3.16 3.14
LAST 1.93 ± 0.07 3.01 ± 0.05 7.63 ± 0.12 29.10 18.68 7.37
LAZER 12.10 ± 0.04 13.60 ± 0.07 21.36 ± 0.07 4.64 4.13 2.63

doc LAS 0.46 ± 0.02 3.44 ± 0.08 11.28 ± 0.30 1854.01 248.31 75.68
LAZ 1.78 ± 0.01 18.67 ± 0.15 57.56 ± 0.17 479.78 45.74 14.84
LAST 0.42 ± 0.01 3.78 ± 0.17 11.81 ± 0.08 2053.87 225.93 72.32
LAZER 0.88 ± 0.02 12.93 ± 0.15 42.97 ± 0.80 970.45 66.05 19.87

ca13 LAS 1.29 ± 0.02 7.89 ± 0.30 53.44 ± 2.31 2025.09 330.51 48.80
LAZ 5.80 ± 0.12 42.60 ± 0.50 204.00 ± 0.80 449.66 61.22 12.78
LAST 1.20 ± 0.02 7.42 ± 0.13 49.57 ± 1.94 2179.32 351.44 52.62
LAZER 3.96 ± 0.07 34.72 ± 0.39 172.70 ± 5.89 658.59 75.12 15.10

SN Computer Science (2024) 5:647 Page 19 of 22 647

SN Computer Science

LAZ files, on average about 1.36 times the throughput of
LAZ.

Transposing the data, as in the LAST format, has a wider
range of effects. The benefits of transposed data become
particularly apparent in cases where most points are not a
match, and where the attribute that is queried only makes up
a small fraction of the memory of a single point. On average,
both LAS and LAST achieve about equal throughputs, with
LAST being slightly faster. However, in certain situations,
LAST vastly outperforms LAS. On the navvis3 data set,
together with the smallest bounding box, querying LAST
data is about twice as fast as querying LAS data, as LAST
first checks the positions for a match, and only if a match
is found loads and parses that other point attributes. A
single LAS point in the navvis3 data set is 26 bytes large, a
single position only 12 bytes, which explains the two-fold
speedup between LAS and LAST, as LAST on average
reads and parses only half as much data as LAS. This effect
is amplified significantly in Experiment 3, where a single
classification value is only one byte large. The ca13 data
set has a very small number of buildings, hence most points
are not a match in the building query. As a result, querying
LAST data is almost 20 times faster than querying LAS data,
achieving point throughputs of over one billion inspected
points per second on a consumer-grade laptop.

In general, the query performance depends a lot on
the queried attribute as well as the query parameters. The
bounding box queries of Experiments 1 and 2 benefit from
the presence of bounding box information within the file
headers, and the fact that both the doc and the ca13 data sets
consist of a large number of small files. This allows for early
culling of files whose bounding boxes do not intersect the
query bounding box, which yields very high effective point
throughputs of between two and three billion points per sec-
ond on the S query. The larger the bounding box, the less

effective this culling becomes, as more and more files fall
into the query bounding box. Even without culling, multi-file
data sets benefit from multiple processor cores, as multiple
files can be queried in parallel. On the reference system, this
results in a 5× to 10× increase in point throughput through
parallel processing alone.

Lastly, adding a density constraint to the bounding box
queries only has a marginal effect on the query run time. The
average run time of a bounding box query with maximum
point density is only 16% higher than without a density
constraint.

Looking at the PostGIS results, we found that even though
PostGIS uses a spatial index, run times are often slower
than simply searching the uncompressed LAS and LAST
files manually. For spatial queries, finding all intersecting
patches is very fast using the spatial index, but as soon as the
more precise PC_Intersection routine is used for obtaining
single-point granularity, performance drops by one order
of magnitude for small queries, and up to three orders of
magnitude for large queries. On top of the raw query run
time, one also has to take into account the preprocessing
time required for loading the point cloud data into the
PostGIS database, which even for a moderately-sized data
set can take hours.

Discussion

The experimental results for queries on both building models
and point clouds show the potential of ad-hoc queries as an
alternative way for users to work with geospatial data. With
text-based building model data, our ad-hoc query application
is able to answer most queries in a few seconds, oftentimes
even outperforming the 3DCityDB system. Only GeoRocket
is performing significantly faster, especially for simple

Table 11 Results of point cloud
Experiment 3

Point throughput is measured in million points per second (Mpts/s)

Experiment 3—Query by object class

Format Runtime (s) Throughput (Mpts/s)

Building Non-existing Building Non-existing

doc LAS 8.74 ± 0.24 8.15 ± 0.21 97.67 104.78
LAZ 62.74 ± 2.29 59.39 ± 0.64 13.61 14.38
LAST 3.73 ± 0.02 0.83 ± 0.03 229.06 1034.24
LAZER 23.66 ± 0.24 21.35 ± 0.11 36.09 40.00
PostGIS (points) 165.68 ± 1.73 5.62 ± 0.03 5.15 151.83

ca13 LAS 44.31 ± 1.62 42.60 ± 2.00 58.86 61.23
LAZ 213.10 ± 2.27 204.47 ± 3.25 12.24 12.75
LAST 2.51 ± 0.23 2.25 ± 0.06 1040.18 1158.96
LAZER 104.76 ± 4.62 104.41 ± 1.73 24.89 24.98
PostGIS (points) 114.78 ± 17.44 110.41 ± 0.56 22.72 23.62

 SN Computer Science (2024) 5:647 647 Page 20 of 22

SN Computer Science

queries, which is unsurprising as it is using an index to
answer the queries. The benefit of using an index decreases
as the number of positive query results increases, as data
throughput becomes a larger bottleneck. In these cases,
ad-hoc queries often perform with equal performance to the
reference database systems. Possibly the biggest downside to
geospatial database systems is the significant time-loss due
to uploading and indexing the data, a process that ad-hoc
queries circumvent completely. Considering the goal of this
paper to provide individual users with ways to quickly work
with new or updated data sets, ad-hoc queries on building
models have thus been demonstrated to fulfill this goal in
many scenarios.

Concerning the point cloud experiments, we have
demonstrated that modern commodity hardware is fast
enough to execute a variety of query scenarios in interactive
or near-interactive time on these data as well. The fact that
many point cloud data sets are split into multiple small files
can be exploited to make ad-hoc queries by bounding box
very fast, especially if the queried region is significantly
smaller than the extent of the data set. A common scenario
that satisfies these criteria are address-based lookups using
a geocoder, which are quite common in the geospatial
domain. Combined with the fact that simple grid-based
LOD representations can be computed with little overhead,
we conclude that it should be possible to implement a point
cloud visualization application for these data sets using
only ad-hoc queries and processing, instead of the time-
consuming preprocessing that is prevalent in the literature.
Applying some data layout optimizations, such as the data
transposition of the LAST format, can yield up to an order
of magnitude speedup, pushing the boundary of possible
ad-hoc queries further towards multi-billion point data sets.

On the other hand, many point cloud data sets are
stored in compressed formats. Their decompression
overhead makes them ill-suited for the kinds of ad-hoc
queries that we evaluated in this paper. While there are fast
compression algorithms available, even a highly efficient
variant such as LZ4 is still at least an order of magnitude
slower than working with uncompressed data. Depending
on the use case, resorting to storing point cloud data in
an uncompressed format might be feasible. Disk space
is generally assumed to be cheap but data transfer over a
network might not be. A hybrid solution might store the
point cloud locally in an optimized, uncompressed format,
and perform on-the-fly compression whenever data has to
be sent to a client over the network.

We primarily see the results of the experiments as a
justification for taking ad-hoc queries into consideration
when developing applications that have to work with
geospatial data. Even if the use of a RDBMS or any other
form of index is warranted in various scenarios, the inherent
performance of modern commodity hardware should

not be underestimated. We already identified individual
users working with new data as one of the main areas of
application for ad-hoc queries. Beyond that, we see many
other areas of application, for example to quickly identify
relevant subsets of larger data sets that can then be indexed
more precisely. Ad-hoc queries can also be used for quality
control of data, identifying potential flaws in the data before
a resource-intensive indexing process has been started.
Ultimately, we believe ad-hoc queries can become one more
tool in the toolbox of application developers. In doing so,
one has to be aware of the downsides of ad-hoc queries:
They are fundamentally limited by the lack of scalability
on a single system, so multi-terabyte data sets will yet be
out of reach for the next couple of years, as will multi-user
scenarios since a single ad-hoc query can occupy most
of the system’s resources. On top of that, ad-hoc query
performance depends heavily on the used data formats.
Especially for binary formats, an efficient memory layout
can make a large difference in the expected performance—a
fact which in our opinion has to be taken into account when
developing and improving data formats for geospatial data
in the future.

Conclusion

In this case study, we conducted a series of experiments that
demonstrate that it is possible to perform common queries
on raw, unindexed geospatial data in single-user scenarios
on commodity hardware while achieving interactive or near-
interactive response times. To demonstrate this, we wrote
two specialized applications based on common search
algorithms for performing queries ad-hoc on both buildings
models in the CityGML format as well as point clouds
in the LAS format and variations thereof. We gathered
experimental data on the run time of a range of common
geospatial queries based on user-defined attributes as well
as bounding boxes and compared our ad-hoc solutions to
common database management systems. In many of the
evaluated scenarios, ad-hoc queries can be answered in
similar or less time than with the database management
systems, especially taking into account the substantial time
required for uploading the test data sets into the databases.
For point cloud queries, we also evaluated how incremental
changes to common data formats can help achieve
substantial improvements in query speed. While we found
compressed point cloud formats to be unsuited for ad-hoc
queries, the same queries on uncompressed formats seldom
took more than a few seconds. With the trivial change of
storing points in a transposed memory layout, we were able
to achieve query throughputs of more than a billion points
per second on commodity hardware. Applications could

SN Computer Science (2024) 5:647 Page 21 of 22 647

SN Computer Science

thus benefit if more point cloud data were stored in such a
transposed memory layout natively.

The experimental results are a strong indicator that in a
single-user setup, ad-hoc queries are a viable alternative to
the classic process of uploading and indexing geospatial data
into a RDBMS. It is noteworthy that our approach is very
simple, requiring neither sophisticated algorithms nor exotic
data formats. Since the ad-hoc queries can be conducted on
raw files, it simplifies and speeds up the access to geospatial
data, enabling users to quickly interact with and evaluate the
data. We believe our work can thus form the basis for the
implementation of on-the-fly query and processing systems
for various geodata.

While analysis scenarios are typically more forgiving
when it comes to query run times, visualization applications
have very strict interactivity requirements. Therefore in
the future we want to evaluate the quality and usability
of a visualization application for building models and
point clouds using only ad-hoc queries. To get rid of the
shortcomings of unindexed data, we also plan to evaluate
how ad-hoc queries can serve as guidelines for indexing only
relevant data on the fly, instead of indexing all data upfront.
As an example, the sequential scan necessary for ad-hoc
queries can be used to build a rough index which in turn can
then be used to guide and speed up future ad-hoc queries.
Furthermore, our experiment on progressive bounding box
indexing has shown that the combination of ad-hoc queries
and adaptive indexing provides a useful balance between
quick response times and indexing overhead. In the future,
we would like to explore this idea further and investigate its
use for geospatial applications in particular.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability All data used for the experiments is publicly available.

Declarations

Conflict of interest The authors declare that they have no Conflict of
interest. This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y,
Bambacus M, Fay D. Spatial cloud computing: How can the geo-
spatial sciences use and help shape cloud computing? Int J Dig
Earth. 2011;4(4):305–29. https:// doi. org/ 10. 1080/ 17538 947. 2011.
587547.

 2. Petri G. An introduction to the technology mobile mapping sys-
tems. GeoInformatics. 2010;13(1):32–43.

 3. Puente I, González-Jorge H, Arias P, Armesto J. Land-based
mobile laser scanning systems: a review. Int Arch Photogram-
metry Remote Sens Spatial Inform Sci. 2011;XXXVIII–5/
W12:163–8. https:// doi. org/ 10. 5194/ isprs archi ves- XXXVI
II-5- W12- 163- 2011.

 4. Arefi H. From LIDAR point clouds to 3D building models. PhD
thesis, Institute for Applied Computer Science-Bundeswehr Uni-
versity Munich; 2009.

 5. European Space Agency ESA: Sentinel Online. Accessed: 2022-
11-09 (2022). https:// senti nel. esa. int.

 6. European Union: Copernicus Programme. Accessed: 2022-11-09
(2022). https:// www. coper nicus. eu.

 7. Schütz M. Potree: Rendering large point clouds in web browsers.
Master’s thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology; 2016.

 8. Bormann P, Krämer M, Würz H.M. Working efficiently with large
geodata files using ad-hoc queries. In: Proceedings of the 11th
international conference on data science, technology, and appli-
cations DATA. Setúbal, Portugal: SciTePress; 2022. p. 438–45.
https:// doi. org/ 10. 5220/ 00112 91200 003269. INSTICC

 9. Boyer RS, Moore JS. A fast string searching algorithm. Com-
mun ACM. 1977;20(10):762–72. https:// doi. org/ 10. 1145/ 359842.
359859.

 10. Horspool RN. Practical fast searching in strings. Softw Pract Exp.
1980;10(6):501–6. https:// doi. org/ 10. 1002/ spe. 43801 00608.

 11. Raita T. Tuning the Boyer–Moore–Horspool string searching algo-
rithm. Softw Pract Exp. 1992;22(10):879–84. https:// doi. org/ 10.
1002/ spe. 43802 21006.

 12. Knuth DE, Morris JH Jr, Pratt VR. Fast pattern matching in
strings. SIAM J Comput. 1977;6(2):323–50. https:// doi. org/ 10.
1137/ 02060 24.

 13. De V, Smit G. A comparison of three string matching algorithms.
Softw Pract Exp. 1982;12(1):57–66. https:// doi. org/ 10. 1002/ spe.
43801 20106.

 14. Aho AV, Corasick MJ. Efficient string matching: an aid to biblio-
graphic search. Commun ACM. 1975;18(6):333–40. https:// doi.
org/ 10. 1145/ 360825. 360855.

 15. Commentz-Walter B. A string matching algorithm fast on the aver-
age. In: Maurer HA, editor. International colloquium on automata,
languages, and programming. London: Springer; 1979. p. 118–32.
https:// doi. org/ 10. 1007/3- 540- 09510-1_ 10.

 16. Navarro G. Regular expression searching on compressed text.
J Discrete Algorithms. 2003;1(5–6):423–43. https:// doi. org/ 10.
1016/ S1570- 8667(03) 00036-4.

 17. Ganty P, Valero P. Regular expression search on compressed text.
In: 2019 data compression conference (DCC). New York: IEEE;
2019. p. 528–37. https:// doi. org/ 10. 1109/ DCC. 2019. 00061.

 18. Ferragina P, Manzini G. Indexing compressed text. J ACM
(JACM). 2005;52(4):552–81. https:// doi. org/ 10. 1145/ 10820 36.
10820 39.

 19. Gustafsson P, Sagonas K. Efficient manipulation of binary data
using pattern matching. J Funct Program. 2006;16(1):35–74.
https:// doi. org/ 10. 1017/ S0956 79680 50057 45.

 20. PostGIS Project: PostGIS-Spatial and Geographic objects for Post-
greSQL. Accessed: 2022-11-09 (2022). https:// postg is. net/.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/17538947.2011.587547
https://doi.org/10.1080/17538947.2011.587547
https://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-163-2011
https://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-163-2011
https://sentinel.esa.int
https://www.copernicus.eu
https://doi.org/10.5220/0011291200003269
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.1002/spe.4380221006
https://doi.org/10.1002/spe.4380221006
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1002/spe.4380120106
https://doi.org/10.1002/spe.4380120106
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1007/3-540-09510-1_10
https://doi.org/10.1016/S1570-8667(03)00036-4
https://doi.org/10.1016/S1570-8667(03)00036-4
https://doi.org/10.1109/DCC.2019.00061
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1017/S0956796805005745
https://postgis.net/

 SN Computer Science (2024) 5:647 647 Page 22 of 22

SN Computer Science

 21. Oracle: Oracle’s Spatial Database. Accessed: 2022-11-09 (2022).
https:// www. oracle. com/ datab ase/ spati al/.

 22. Microsoft: SQL Server. Accessed: 2022-11-09 (2022). https://
www. micro soft. com/ en- us/ sql- server.

 23. Open Source Geospatial Foundation: GeoServer. Accessed: 2022-
11-09 (2022). http:// geose rver. org/.

 24. OSGeo Foundation: Deegree. Accessed: 2022-11-09 (2022).
https:// www. deegr ee. org/.

 25. Yao Z, Nagel C, Kunde F, Hudra G, Willkomm P, Donaubauer
A, Adolphi T, Kolbe TH. 3DCityDB—a 3D geodatabase solution
for the management, analysis, and visualization of semantic 3D
city models based on CityGML. Open Geospat Data Softw Stand.
2018;3(1):5. https:// doi. org/ 10. 1186/ s40965- 018- 0046-7.

 26. Krämer M. Georocket: a scalable and cloud-based data store for
big geospatial files. SoftwareX. 2020. https:// doi. org/ 10. 1016/j.
softx. 2020. 100409.

 27. Rapidlasso GmbH: LAStools: award-winning software for rapid
LiDAR processing. Accessed: 2021-06-08 (2021). http:// lasto ols. org/.

 28. Isenburg M, Liu Y, Shewchuk J, Snoeyink J, Thirion T. Generat-
ing raster DEM from mass points via TIN streaming. In: Raubal
M, Miller HJ, Frank AU, Goodchild MF, editors. International
conference on geographic information science. London: Springer;
2006. p. 186–98. https:// doi. org/ 10. 1007/ 11863 939_ 13.

 29. American Society for Photogrammetry and Remote Sensing
(ASPRS): LAS specification, version 1.4 - R13. Accessed: 2022-
11-09 (2013). https:// www. asprs. org/ wp- conte nt/ uploa ds/ 2010/
12/ LAS_1_ 4_ r13. pdf.

 30. Schütz M. Potree. Accessed: 2022-11-09 (2022). https:// github.
com/ potree/ potree/.

 31. Cesium GS, Inc.: CesiumJS - Cesium. Accessed: 2022-11-09
(2022). https:// cesium. com/ platf orm/ cesiu mjs.

 32. Hobu Inc.: Entwine. Accessed: 2022-11-09 (2019). https:// entwi
ne. io/.

 33. Bormann P, Krämer M. A system for fast and scalable point cloud
indexing using task parallelism. Smart Tools Apps for Graph
Eurograph Italian Chapt Conf. 2020. https:// doi. org/ 10. 2312/ stag.
20201 250.

 34. Schütz M, Ohrhallinger S, Wimmer M. Fast out-of-core octree
generation for massive point clouds. Comput Graph Forum.
2020;39(7):1–2.

 35. El-Mahgary S, Virtanen JP, Hyyppä H. A simple semantic-based
data storage layout for querying point clouds. ISPRS Int J Geoin-
form. 2020. https:// doi. org/ 10. 3390/ ijgi9 020072.

 36. van Oosterom P, Martinez-Rubi O, Ivanova M, Horhammer M,
Geringer D, Ravada S, Tijssen T, Kodde M, Gonçalves R. Massive
point cloud data management: design, implementation and execu-
tion of a point cloud benchmark. Comput Graph. 2015;49:92–125.
https:// doi. org/ 10. 1016/j. cag. 2015. 01. 007.

 37. Cura R, Perret J, Paparoditis N. A scalable and multi-purpose
point cloud server (PCS) for easier and faster point cloud data
management and processing. ISPRS J Photogrammetry Remote
Sens. 2017;127:39–56. https:// doi. org/ 10. 1016/j. isprs jprs. 2016.
06. 012.

 38. Ramsey P, Blottiere P, Brédif M, Lemoine E. pgPointcloud—
a PostgreSQL extension for storing point cloud (LIDAR) data.
Accessed: 2021-07-19 (2021). https:// pgpoi ntclo ud. github. io/
point cloud/ index. html.

 39. Idreos S, Kersten ML, Manegold S. Database cracking In: CIDR,
vol. 7; 2007. p. 68–78.

 40. Holanda P, Raasveldt M, Manegold S, Mühleisen H. Progres-
sive indexes: indexing for interactive data analysis. Proc VLDB
Endow. 2019;12(13):2366–78. https:// doi. org/ 10. 14778/ 33587 01.
33587 05.

 41. Hohenstein M. Progressive indexing for interactive analytics. In:
Thor A, Totzauer S, editors. GvDB. CEUR workshop proceed-
ings, vol. 3075; 2021.

 42. Idreos S, Alagiannis I, Johnson R, Ailamaki A. Here are my data
files. Here are my queries. Where are my results? In: Proceedings
of 5th biennial conference on innovative data systems research
CIDR; 2011.

 43. Alagiannis I, Borovica R, Branco M, Idreos S, Ailamaki A. Nodb:
efficient query execution on raw data files. In: Proceedings of the
2012 ACM SIGMOD international conference on management of
data. SIGMOD’12. Association for Computing Machinery, New
York, NY, USA; 2012. p. 241–52. https:// doi. org/ 10. 1145/ 22138
36. 22138 64.

 44. Karpathiotakis M, Branco M, Alagiannis I, Ailamaki A.
Adaptive query processing on raw data. Proc VLDB Endow.
2014;7(12):1119–30. https:// doi. org/ 10. 14778/ 27329 77. 27329 86.

 45. Fraunhofer IGD: Enhanced NYC 3-D building model. Version
20v5. Accessed: 2022-11-09 (2021). https:// github. com/ georo
cket/ new- york- city- model- enhan ced/.

 46. Watershed Sciences, Inc: PG &E Diablo Canyon Power Plant
(DCPP): San Simeon, CA Central Coast. Accessed: 2022-11-09.
https:// portal. opent opogr aphy. org/ datas etMet adata? otCol lecti
onID= OT. 022013. 26910.2.

 47. Gröger G, Kolbe TH, Nagel C, Häfele K-H. OGC city geography
markup language (CityGML) encoding standard 2.0.0. Open Geo-
spatial Consortium, Rockville, USA; 2012.

 48. Department of Information Technology & Telecommunications
(DoITT) of the City of New York: NYC 3-D Building Model.
Accessed: 2022-11-09 (2018). https:// www. nyc. gov/ site/ plann ing/
data- maps/ open- data/ dwn- nyc- 3d- model- downl oad. page.

 49. Department of City Planning (DCP) of the City of New York: Pri-
mary Land Use Tax Lot Output (PLUTO). Accessed: 2022-11-09
(2022). https:// www. nyc. gov/ site/ plann ing/ data- maps/ open- data/
dwn- pluto- mappl uto. page.

 50. NavVis: NavVis M6 Point Cloud Data. Accessed: 2022-
11-09. https:// www. navvis. com/ resou rces/ speci ficat ions/
navvis- m6- sample- data.

 51. Washington, DC: District of Columbia—Classified Point Cloud
LiDAR. Accessed: 2022-11-09. https:// regis try. opend ata. aws/ dc- lidar/.

 52. Egenhofer MJ, Franzosa RD. Point-set topological spatial rela-
tions. Int J Geograph Inform Syst. 1991;5(2):161–74. https:// doi.
org/ 10. 1080/ 02693 79910 89278 41.

 53. Fraunhofer IGD: Ad-hoc queries on 3D building models—Bench-
mark implementation. Accessed: 2022-11-09 (2022). https://
github. com/ igd- geo/ adhoc- queri es- build ing- models.

 54. The City of New York: Building Classification. Accessed: 2022-
11-09 (2022). https:// www1. nyc. gov/ assets/ finan ce/ jump/ hlpbl
dgcode. html.

 55. Gaede V, Günther O. Multidimensional access methods. ACM
Comput Surv. 1998;30(2):170–231. https:// doi. org/ 10. 1145/
280277. 280279.

 56. Morton GM. A computer oriented geodetic data base and a new
technique in file sequencing; 1966

 57. Fraunhofer IGD: Ad-hoc queries on point clouds—Benchmark
implementation. Accessed: 2022-11-09 (2021). https:// github.
com/ igd- geo/ adhoc- queri es- point clouds.

 58. LZ4 Team: Extremely Fast Compression algorithm. Accessed:
2022-11-09 (2022). https:// github. com/ lz4/ lz4.

 59. Cesium Team: CesiumGS/3d-tiles: Specification for streaming
massive heterogeneous 3D geospatial datasets. Accessed: 2022-
11-09 (2018). https:// github. com/ Cesiu mGS/ 3d- tiles.

 60. Contributors PDAL. PDAL Point Data Abstract Lib. 2018. https://
doi. org/ 10. 5281/ zenodo. 25567 38.

 61. Scheiblauer C. Interactions with gigantic point clouds. PhD thesis,
Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology; 2014.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.oracle.com/database/spatial/
https://www.microsoft.com/en-us/sql-server
https://www.microsoft.com/en-us/sql-server
http://geoserver.org/
https://www.deegree.org/
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1016/j.softx.2020.100409
https://doi.org/10.1016/j.softx.2020.100409
http://lastools.org/
https://doi.org/10.1007/11863939_13
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://github.com/potree/potree/
https://github.com/potree/potree/
https://cesium.com/platform/cesiumjs
https://entwine.io/
https://entwine.io/
https://doi.org/10.2312/stag.20201250
https://doi.org/10.2312/stag.20201250
https://doi.org/10.3390/ijgi9020072
https://doi.org/10.1016/j.cag.2015.01.007
https://doi.org/10.1016/j.isprsjprs.2016.06.012
https://doi.org/10.1016/j.isprsjprs.2016.06.012
https://pgpointcloud.github.io/pointcloud/index.html
https://pgpointcloud.github.io/pointcloud/index.html
https://doi.org/10.14778/3358701.3358705
https://doi.org/10.14778/3358701.3358705
https://doi.org/10.1145/2213836.2213864
https://doi.org/10.1145/2213836.2213864
https://doi.org/10.14778/2732977.2732986
https://github.com/georocket/new-york-city-model-enhanced/
https://github.com/georocket/new-york-city-model-enhanced/
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.022013.26910.2
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.022013.26910.2
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-nyc-3d-model-download.page
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-nyc-3d-model-download.page
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://www.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://www.navvis.com/resources/specifications/navvis-m6-sample-data
https://www.navvis.com/resources/specifications/navvis-m6-sample-data
https://registry.opendata.aws/dc-lidar/
https://doi.org/10.1080/02693799108927841
https://doi.org/10.1080/02693799108927841
https://github.com/igd-geo/adhoc-queries-building-models
https://github.com/igd-geo/adhoc-queries-building-models
https://www1.nyc.gov/assets/finance/jump/hlpbldgcode.html
https://www1.nyc.gov/assets/finance/jump/hlpbldgcode.html
https://doi.org/10.1145/280277.280279
https://doi.org/10.1145/280277.280279
https://github.com/igd-geo/adhoc-queries-pointclouds
https://github.com/igd-geo/adhoc-queries-pointclouds
https://github.com/lz4/lz4
https://github.com/CesiumGS/3d-tiles
https://doi.org/10.5281/zenodo.2556738
https://doi.org/10.5281/zenodo.2556738

	Executing Ad-Hoc Queries on Large Geospatial Data Sets Without Acceleration Structures
	Abstract
	Introduction
	Differences to the Conference Paper

	Related Work
	Searching Text Data
	Searching Binary Data
	Searching Geospatial Data
	Dynamic Indexing Approaches

	Methodology
	Data Types
	Common Geospatial Queries
	Implementation
	Experiment Setup

	Querying Building Data
	Executing Ad-Hoc Queries on Building Data
	Extracting Objects Based on Arbitrary String Matches
	Searching for Key-Value Pairs
	Advanced Key-Value Queries
	Bounding Box Queries
	Combining Multiple Queries

	Implementation
	Building Experiments
	Experiment 1: Search by Free Text
	Experiment 2: Search for Key-Value Pairs
	Experiment 3: Advanced Key-Value Queries
	Experiment 4: Search by Bounding Box
	Experiment 5: Logical AND

	Comparison with Existing Solutions
	Progressive Bounding Box Index Generation

	Querying Point Cloud Data
	Executing Ad-Hoc Queries on Point Cloud Data
	Implementation
	Optimizations
	Point Cloud Experiments
	Experiment 1: Bounding Box Query
	Experiment 2: Bounding Box Query with Maximum Density
	Experiment 3: Query by Object Class

	Point Cloud Results

	Discussion
	Conclusion
	References

