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Abstract
In this case study, we investigate if it is possible to harness the capabilities of modern commodity hardware to perform ad-hoc 
queries on large raw geospatial data sets. Normally, this requires building an index structure, which is a time-consuming 
process. We aim to provide means to individual users who receive a new or updated geospatial data set and want to directly 
start working with it without having to build such an index structure first. To this end, we conduct various experiments on 
two distinct types of data: 3D building models and point clouds. For the former, we demonstrate that well-known algorithms 
such as fast string search allow a wide range of queries to be answered in at most a few seconds on data sets with over a 
million buildings. The usage of progressive indexing additionally improves query run time by more than a factor of two. 
Regarding point clouds, we achieve similar run times using the popular LAS file format and a query throughput of up to a 
billion points per second when using a columnar memory layout. The run time of ad-hoc queries is often on par with that of 
database-driven solutions, sometimes even outperforming them. Considering that ad-hoc queries require no preprocessing, 
our results show that they are a viable alternative to acceleration structures when working with geospatial data.
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Introduction

Geospatial information is important for a wide range of 
applications. Professional users from mapping agencies, 
municipalities, or companies require timely access to up-
to-date data for use cases such as environmental monitoring, 
infrastructure planning, catastrophe management, or health 
care. Simultaneously, an increasing number of data acquisi-
tion sensors and devices produce large amounts of data in 
a short time [1]. For example, terrestrial mobile mapping 

systems mounted on cars [2, 3] are deployed in urban areas 
to continuously monitor the environment or to support plan-
ning processes. They collect 3D point clouds and panorama 
images on a daily basis. Point clouds produced by airborne 
laser scanners are in turn used to generate 3D building mod-
els [4], which are further enriched with semantic informa-
tion. Earth observation initiatives such as the Sentinel mis-
sions [5] from the Copernicus programme [6] constantly 
produce imagery that is immediately made available to the 
public and is free of charge.

Domain experts are increasingly faced with the challenge 
that they receive new or updated large data sets (sometimes 
on a daily basis) and need immediate access to them. The 
classic way to work with such data is to load it into a geo-
spatial information system or database. These systems offer 
a wide range of functionality. In order to provide users with 
access to individual items from large data sets, they create 
acceleration structures such as inverted indexes. Other tools 
reorder the raw data and optimize it for certain use cases. 
Potree, for example, processes point clouds and creates an 
acceleration structure for fast web visualization [7].

However, in our practical work, we have observed that 
the larger the data becomes, the harder it is to create an 
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acceleration structure for it, and thus, the longer it takes 
until the data can be used. Importing big data sets into a 
geospatial information system or a database or processing 
the data with a tool like Potree sometimes takes several 
hours or even days, which prevents (or at least hinders) 
timely access to up-to-date information. We have also 
observed that, as a consequence, new or updated data sets 
are often provided as raw files without an acceleration 
structure on a remote server for download to the local disk. 
To immediately use such data in their applications (or 
simply to evaluate it before importing it into a database), 
individual users therefore would benefit from a system that 
allows them to work directly (i.e. ad-hoc) on the raw data.

The necessity of creating an acceleration structure—a 
process called indexing—is a fundamental insight of 
the computer science discipline rooted in algorithmic 
complexity analysis. If either the data size scales up or 
the maximum allowed query time scales down, the jump 
from linear to logarithmic lookup time is crucial. Modern 
computer architectures are, however, hardly as simple as 
the models we use for algorithmic complexity analysis. As 
such, there is a fundamental difference between a system 
that is algorithmically efficient and one that is actually 
usable—i.e. one that meets the user expectations in terms 
of run time. Something that is efficient might still not be 
usable, and something that is usable might not be efficient. 
At the same time, something that was considered large 
data a few years ago might be perfectly manageable by 
commodity hardware today.

Our main aim in this case study is, therefore, to 
empirically investigate if it is possible to perform ad-hoc 
queries on large geospatial data using raw files without 
indexing. To this end, we conduct various experiments 
with different data sets and measure the performance 
of practical ad-hoc queries. We compare the results 
with existing systems and critically discuss benefits 
and drawbacks of working without an index. Since the 
main challenge of querying unindexed geospatial data 
are the large data volume and high number of individual 
data points, we explain strategies for increasing query 
throughput using the power of modern hardware.

Specifically, the goals of our study are as follows:

• We aim to provide means to individual users who get 
a new or updated data set and want to quickly start 
working with it. For example, they should be able to 
timely access single data items, to analyse the data, or 
to quickly visualize small parts of it without having to 
load the whole data set into a geospatial information 
system or a database first.

• Since we target individual users, we want to investigate 
the possibilities of modern commodity hardware 
instead of large compute clusters. The results of the 

experiments presented in this paper were all collected 
on a standard laptop.

• We want to evaluate if simple but well-known 
algorithms such as a fast string search can be used 
to replace complex and time-consuming indexing. It 
should still be possible to achieve reasonable access 
times for common geospatial queries.

Note that our non-goals are as follows:

• We do not want to create a universal approach that 
applies to all kinds of data sets with different formats 
or schemas. In this paper, we only investigate 3D 
city models and point clouds, which are two of the 
most common kinds of geospatial data. They are also 
distinctively different in structure and therefore suitable 
to represent a range of other formats (including textual 
as well as binary ones).

• The programs we created for our experiments do not 
support scalability in terms of numbers of queries 
per second or number of users working in parallel. 
We address individual users who download a new or 
updated data set from a remote server to their local hard 
drive.

• We focus on common geospatial queries (e.g. based on 
attributes or bounding boxes) and on extracting single 
data items or small parts of a large data set. We do not 
cover more complex data analyses or visualizations.

The main contribution of this case study are the results 
of the experiments as well as strategies for improving 
the query throughput on raw geospatial data files, 
both for textual and binary data. They provide useful 
and interesting insights for researchers and software 
developers of geospatial information management and 
analysis systems who need to work with large and up-to-
date data sets. The results demonstrate that ad-hoc queries 
are a viable alternative to indexing for geospatial data 
management.

The paper starts with an overview of related work 
(“Related Work” section) and an introduction into the 
methodology of our study (“Methodology” section). It 
is then structured in two parts illustrating ad-hoc queries 
on building models (“Querying Building Data” section) 
and point clouds (“Querying Point Cloud Data” section). 
Based on the experimental results, we critically discuss 
the implications on applications working with geodata 
(“Discussion” section). The paper finishes with conclusions 
and an outlook on future research possibilities (“Conclusion” 
section).
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Differences to the Conference Paper

This paper is a significant extension of our conference 
paper presented at DATA 2022 [8]. The previous work 
was a position paper where we presented our idea and first 
results of experiments with building and point cloud data. 
In the meantime, we were able to explore new research 
aspects. In summary, the extended paper covers the 
following additional topics:

• We have extended our posit ion paper to a 
comprehensive case study that covers many more 
experiments than before. The results now also contain 
more details and comprehensive in-depth discussions 
(see “Methodology”–“Discussion” sections).

• The  “Related Work” section has been completely 
revised. In particular, we have included a list of existing 
works on dynamic indexing approaches (“Dynamic 
Indexing Approaches” section).

• We have revised our comparison with existing tools, 
in particular the solutions for managing building data 
(“Comparison with Existing Solutions” section). We 
upgraded the tool GeoRocket to the latest alpha version, 
which promises a higher performance and performed 
our experiments again to get updated measurements.

• We extended our approach for the search in building 
data and added a completely new section on progressive 
bounding box index generation (“Progressive Bounding 
Box Index Generation” section). This section shows 
how our approach can be combined with existing ones 
to open up new research possibilities.

Related Work

Searching for an element in a large set of candidates is 
a well-studied area. The following sections summarize 
known search algorithms, the use cases in which they 
are applied, and the additional knowledge they exploit. 
We focus on searching in text data (“Searching Text 
Data” section) and binary data (“Searching Binary Data” 
section). After that, we given an overview of specialized 
solutions to search for geospatial information (“Searching 
Geospatial Data” section). Finally, we summarize 
approaches to information retrieval that either create an 
index on demand (or incrementally) or that try to avoid 
creating an index at all (“Dynamic Indexing Approaches” 
section).

Searching Text Data

String matching is a search for a sequence of characters 
(pattern) in a larger sequence (text). Knowledge about the 
pattern can be exploited to skip as many bytes as possible 
in the text and hence to improve performance.

One of the best known algorithms in this area is 
Boyer–Moore [9]. In contrast to a naïve linear search 
where the first character of the pattern is compared to every 
character of the text, Boyer–Moore starts at the end of the 
pattern. If the last character does not match with the text, 
the previous characters do not need to be checked and 
the algorithm can skip some parts of the text. The longer 
the pattern, the more likely it is that a larger number of 
characters can be skipped.

Horspool simplified Boyer–Moore’s algorithm by 
removing comparisons related to repetitions in the pattern 
[10]. These comparisons provided little improvement for 
natural language text and did not justify the additional effort. 
Raita exploited another effect with regard to natural language 
text: the closer the characters, the more they depend on 
each other [11]. Similar to Boyer–Moore–Horspool, Raita’s 
improvement first looks at the last character of the pattern. 
After that, however, the first character is evaluated rather 
than the second to last. In this way, the dependencies 
between the characters are as small as possible and the 
probability of detecting a difference early is higher.

An alternative to Boyer–Moore is the algorithm of 
Knuth–Morris–Pratt [12]. Unlike Boyer–Moore, it starts 
with the first character of the pattern and not the last one but 
still tries to skip as many characters as possible. Comparing 
the two algorithms, Boyer–Moore is usually faster when 
searching in natural language text. However, when the 
underlying alphabet is very small, Knuth–Morris–Pratt may 
be better [13].

The algorithms mentioned above only search for a 
single pattern. Aho–Corasick introduced an algorithm 
that can look for multiple patterns at the same time [14]. 
The algorithm uses a finite state machine to check each 
pattern simultaneously as it traverses the text. This works 
best when the patterns have a common prefix or suffix. 
Commentz–Walter combined the idea of a finite state 
machine with Boyer–Moore’s approach to achieve better 
run time [15].

Searching Binary Data

Compared to the search in text data, searching binary data 
highly depends on the format. Sometimes, individual byte 
positions of items in the data can be directly calculated and 
sometimes not. In some cases, a fixed bit pattern can be used 
as a search pattern, but sometimes, other information from 
the file (i.e. the file header) must be evaluated first.
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An intermediate stage between plain text files and 
arbitrary binary data is compressed text. The goal is still to 
find a pattern in a sequence of characters, but the sequence 
is now compressed. Some algorithms have been developed 
that exploit how the individual compression schemes work 
to make use of additional information during the search. 
An example is the approach by Navarro [16]. It searches 
for regular expressions in a Ziv–Lempel compressed text, 
where repetitions in the original text are replaced with 
a pointer to the first occurrence. The algorithm takes 
advantage of this and only searches individual blocks in 
the compression. This doubles the search speed compared 
to decompressing and searching afterwards. However, the 
algorithm only works with Ziv–Lempel compressed text. 
Ganty et al. presented a similar algorithm that can search 
on grammar compressed text in general [17]. It returns the 
number of matches to a regular expression in linear time. 
Another approach was introduced by Ferragina et al [18]. 
They combine the compression of text with the creation of 
an index. This enables fast searches even though the original 
text was compressed.

Regarding searching in binary data in general, Gustafsson 
et al. present an approach to find patterns in network packets 
[19]. Gustafsson et al. read the length of a packet from 
the header information. Afterwards, they are able to filter 
individual segments using a decision tree.

Searching Geospatial Data

The ability to perform queries on the data is one of the 
central features that enable value generation from geospatial 
data. While data exchange often happens through specialized 
file formats, geospatial applications have long been working 
with relational database management systems (RDBMSs) 
as their preferred storage backend. The popular PostGIS 
project [20] adds support for spatial data to the PostgreSQL 
RDBMS and has become a de facto industry standard over 
the last two decades. Other RDBMSs with spatial support 
are Oracle Spatial [21] and Microsoft SQL Server [22]. 
Specialized data management solutions such as GeoServer 
[23] and Deegree [24] utilize these RDBMSs to store raster 
data and geometries.

3DCityDB [25] and GeoRocket [26] are open-source 
applications that manage 3D building models. Both 
are able to use various relational databases as backend, 
whereas GeoRocket also supports NoSQL solutions such as 
MongoDB. 3DCityDB and GeoRocket provide a high-level 
API with which users can query large 3D city models and 
extract individual buildings or small areas using filters based 
on semantic attributes or spatial areas (i.e. bounding boxes).

An area where file-based approaches are the default 
is point cloud data. A point cloud is a usually unordered 
collection of n-dimensional points, with the dimensions 

corresponding to predefined attributes, such as the position 
in 3D space, a color value or grayscale intensity, or an object 
classification, to name a few. Due to the limited amount of 
information inherent in a single point, point cloud data 
typically consists of millions to billions of individual points. 
A popular software for working with point cloud data is 
LAStools [27, 28], a set of command line tools for tasks 
such as splitting, merging, transforming and rasterizing 
point clouds, all based on the standardized LAS file format 
[29]. Many point cloud visualization applications also 
require acceleration structures in specialized file formats 
and layouts. Examples are Potree [30] or Cesium [31], for 
which several file-based preprocessing tools exist [32–34]. 
The standard approach for querying these point clouds is 
file grouping: points are grouped together by some primary 
key, where points close to each other in the domain of the 
key are put into the same file. Executing a query on these 
point clouds is then equivalent to looking up the matching 
files based on the primary key and the name of the files. 
This approach is used by the Potree system [7] for spatial 
queries, as well as for queries by object class as proposed 
by El-Mahgary et al. [35]. The downside of these file-based 
approaches is that they require a complete reordering of the 
data, resulting in a copy of the original data. Besides file-
based approaches, there has been recent work studying the 
usage of RDBMSs for point clouds. Van Oosterom et al. 
conducted a study analysing the performance of common 
RDBMSs when storing and retrieving point cloud data [36]. 
There are also specific RDBMSs available for point cloud 
data, such as the Point Cloud Server [37] or the pgPointcloud 
extension for PostgreSQL [38]. Still, file-based systems are 
used most frequently since working with raw files is simple 
and enables more specialized data structures. These in turn 
can yield higher point throughput than RDBMSs and can 
support specialized features, such as the level-of-detail 
support that enables fast web-rendering of point clouds in 
the Potree system.

Dynamic Indexing Approaches

Optimizing the performance of queries in databases is 
a research area with a long history but still very active 
today. Various indexing methods and query optimization 
techniques have been investigated. While the traditional 
solution is to create an index in advance, there are more 
dynamic approaches that work on demand, incrementally, 
or that try to avoid creating an index at all.

An incremental indexing technique described by Idreos 
et al. is called Database Cracking [39]. Attributes that are 
frequently requested are clustered and partially sorted. 
The first query on a specific attribute initializes the index 
and therefore causes some overhead. With each further 
query, however, refined fragments may be created in the 



SN Computer Science           (2024) 5:647  Page 5 of 22   647 

SN Computer Science

index, which incrementally increases the query processing 
speed. Database Cracking was specifically designed for an 
environment where you have no prior knowledge of what 
attributes might be of interest and no time to wait for updates 
to be indexed.

Progressive Indexing by Holanda et al. is an adaptive 
indexing technique that improves Database Cracking by 
providing a guarantee for convergence, more robustness, 
more controllable indexing overhead, and lower overhead 
for the first query [40]. Each query triggers an incremental 
indexing step. The indexing overhead is calculated using 
a cost model and a parameter that indicates how many 
operations may be performed within a single indexing step.

Hohenstein presents an extended approach to Progressive 
Indexing, which is based on approximate query processing 
[41]. Hohenstein applies uniform sampling in combination 
with rare sub-population detection. This way, the cost of 
scanning the data when the index is not yet fully built can be 
reduced. The system renders more inaccurate results at the 
beginning, in exchange for more speed, but returns accurate 
results later when the index is fully built.

To generalize the approach of Database Cracking, Idreos 
et al. further address the problem that loading a large data 
set into a database takes a lot of time and that setting up and 
optimizing databases for data and workload is a complex 
task [42]. Their idea is that the user should only have to 
provide a link to the data and can start querying directly 
while small parts of the data are loaded into the database 
only when and if needed. To this end, Idreos et al. extend the 
DBMS MonetDB with an adaptive loading strategy. In our 
case study, we also aim to create a solution that allows data 
to be queried directly, but in contrast, our approach does not 
need a database.

Alagiannis et al. present a new paradigm called NoDB, 
which abstractly describes a data query solution that avoids 
the need of loading data but provides all features of a 
modern DBMS [43]. The authors claim that their approach 
can reduce the time from data arrival to analysis. They also 
see a problem in storing the data in internal, proprietary 
database formats, which is avoided by working on raw files. 

Another approach, which builds upon the NoDB paradigm, 
is presented by Karpathiotakis et al. who add more flexibility 
by describing an adaptive query engine that supports 
various data formats [44]. Their approach uses Just in Time 
compilation (JIT) for querying raw files in a more optimal 
way and so-called column shreds to read as few bytes as 
necessary. In contrast to the works of Alagiannis et  al. 
and Karpathiotakis et al., the approach we present in this 
paper is focused on geospatial data, which requires specific 
operations (such as a bounding box search) but also allows 
us to optimize query performance to the use case.

Methodology

In order to evaluate if ad-hoc queries can be performed 
in reasonable time on large raw geospatial data sets, we 
conducted various practical experiments. We measured 
the time for each ad-hoc query and compared the results 
with existing solutions. We also identified benefits and 
drawbacks of ad-hoc queries compared to acceleration 
structures. The following sections give an overview of the 
different data types and data sets used in our experiments 
(“Data Types” section), the geospatial queries covered 
(“Common Geospatial Queries” section), implementation 
details (“Implementation” section), as well as the setup for 
our experiments (“Experiment Setup” section).

Data Types

As mentioned in the “Introduction” section, we focus on 
two types of geospatial data in our case study: 3D building 
models and point clouds. Figures 1 and 2 show screenshots 
of two applications that visualize both data types in a web 
browser. 

We chose these data types because they are well-known 
but are quite different in their structure and usage. In 
addition, there are many large and open data sets available 
for these two formats. Building models are often stored in 
CityGML [47], which is a textual, XML-based format. Point 

Fig. 1  Screenshots of a web viewer showing the enhanced New York City 3D Building Model [45] with semantic attributes
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clouds are typically provided in the binary formats LAS [29] 
and its compressed variant LAZ.

For the first set of experiments (see “Querying Building 
Data” section), we used the enhanced New York CityGML 
3D Building Model (version 20v5), which is a combination 
of the NYC 3D Building Model [48] and the PLUTO data 
file (Primary Land Use Tax Lot Output) [49], both provided 
free of charge by the City of New York. The data set consists 
of 20 files, has a total size of 20.91 GiB, and contains 
1,083,437 buildings with up to 90 semantic attributes per 
building. It can be downloaded from GitHub [45]. We 
used the raw, extracted files. No indexing was applied. 
All experiments were run two times to test different data 
sizes: once on a single file (DA12_3D_Buildings_Merged.
gml, 736.3 MiB, 24,038 buildings), and another time on the 
whole data set.

For the point clouds, we used three different data sets 
varying in size and provided file format. All files are publicly 
available and free of charge:

• navvis3: The navvis_m6_3rdFloor data set (139 MiB 
LAZ file with 56.2 million points) [50]

• doc: The District of Columbia 2018 scan (22.2 GiB, 319 
LAS files, 854 million points) [51]

• ca13: A subset of the PG &E Diablo Canyon Power Plant 
data set (12.7 GiB, 412 LAZ files, 2.6 billion points) [46]

Common Geospatial Queries

When users work with a geospatial data set, they usually 
have a certain goal in mind: they want to explore the data, 
visualize it (or a subset of it), or perform some kind of 
analysis. For this, users typically need a way to filter the 
data set and to extract items based on certain criteria—i.e. to 
perform queries on it—in order to focus on the information 
that is actually necessary for the task at hand. The most 
common geospatial queries are as follows:

• The users have to be able to extract data items based 
on a given set of user-defined attributes (e.g. address, 
number of floors, classification, heat demand).

• They also need to be able to retrieve all data items that 
lie within a given bounding box (i.e. an axis-aligned 
rectangular spatial area), for example for a visualization 
or an in-depth analysis of smaller areas.

For the experiments we present in the “Querying Building 
Data” and “Querying Point Cloud Data” sections, we 
formulated corresponding ad-hoc queries on the two types 
of data. For the point clouds, we also defined a query 
based on a dynamic property that can only be calculated 
by analysing the data (i.e. the point density).

Implementation

The specific data formats of building models (CityGML) 
and point clouds (LAS/LAZ) require different 
techniques for parsing and interpreting. According to 
which technologies are typically used in practice, we 
implemented the experiments of our case study in two 
different programming languages: Kotlin for the building 
models and Rust for the point clouds.

Kotlin is a language based on the Java Virtual Machine. 
The Java API is often used for building models because 
of its sophisticated support for reading XML files. For 
point clouds with their binary files containing millions or 
billions of data items, it is often more reasonable to use a 
low-level programming language like Rust, which provides 
the developer with means to organize the memory layout 
and to control when resources are allocated and released.

More details on the individual implementations are 
given in the  “Implementation” section on querying 
building data and the “Implementation” section on point 
clouds.

Fig. 2  Screenshots of the ca13 (PG &E Diablo Canyon Power Plant) point cloud data set [46] visualized in Potree [30] with photo-realistic RGB 
coloring (left) and colors based on semantic classification (right)
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Experiment Setup

As described in the goals of our case study, we wanted to test 
if ad-hoc queries can be performed on commodity hardware 
of individual users instead of on large compute clusters. All 
experiments were therefore conducted on a standard laptop, 
a 16” MacBook Pro 2019 with a 2.6 GHz 6-Core Intel Core 
i7 CPU, a 1 TB SSD hard disk, 32 GB of RAM, and macOS 
12.

We executed each ad-hoc query five times, recorded the 
time taken each, and then calculated the median as well as 
the standard deviation. In order to get consistent results, we 
also used the shell commands sync and purge on macOS to 
flush the disk page cache prior to every run. The run times 
of these commands were not included in the measured time.

Since the program for the building experiments was 
written in Kotlin, we also performed two initial runs 
there (prior to the five main runs) to allow the just-in-
time compiler (JIT) to warm-up. These runs were also not 
included in the median and standard deviation.

Querying Building Data

This section describes how we performed ad-hoc queries 
on building data stored in the XML-based CityGML file 
format. First, we introduce our basic approach (“Executing 
Ad-Hoc Queries on Building Data” section) and give some 
implementation details (“Implementation” section). We then 
present the results of the conducted experiments (“Building 
Experiments” section) and compare them with existing 
solutions (“Comparison with Existing Solutions” section). 
Finally, we present an approach to speed up the search for 
bounding boxes using progressive indexing (“Progressive 
Bounding Box Index Generation” section).

CityGML defines various modules covering a large 
number of object types that can appear in an urban 
environment (e.g. buildings, bridges, street furniture, 
railways). We focus on the core and the building module 
which address generic geometries and attributes as well as 
building models.

Executing Ad‑Hoc Queries on Building Data

The classic approach to work with XML is to parse the 
file into memory and interpret the elements according to 
the schema. However, building a document object model 
(DOM) for a data set that is potentially several gigabytes 
large is impractical, and parsing the entire XML structure 
just to match a few attributes and extract a subset of objects 
is too much of an overhead. Instead, our approach is purely 

textual. It is based on a fast string matching algorithm and 
a simple but effective way to extract individual building 
models from the CityGML data set.

The following subsections describe operations that 
build upon each other and pose challenges with increasing 
difficulty to the query system. The most basic operation on 
textual data is free text search. Our assumption is that if you 
are able to find an arbitrary string in the data set (“Extracting 
Objects Based on Arbitrary String Matches” section), you 
should also be able to identify key-value pairs (“Searching 
for Key-Value Pairs” section) and to perform more advanced 
value comparisons (“Advanced Key-Value Queries” section). 
In turn, being able to find key-value pairs is a prerequisite 
to retrieving objects by bounding box (“Bounding Box 
Queries” section). Finally, multiple queries can be combined 
using logical operators (“Combining Multiple Queries” 
section).

Extracting Objects Based on Arbitrary String Matches

The first step in our approach is to search the data set 
for an arbitrary string. For this, we implemented Raita’s 
enhancement to the Boyer–Moore–Horspool fast string 
searching algorithm [11] (see also “Searching Text Data” 
section).

The main idea is as follows: if you can quickly identify a 
byte position pi of what you are looking for in the data set, 
you can then create two cursors c1 and c2 that search the file 
from pi backward and forward to find the start and the end 
of the XML element to extract respectively.

Figure 3 depicts this procedure. pi points to the matched 
string “Empire State Building”. Cursor c1 searches the data 
set backward from pi − 1 to pi − n until it finds the start of 
a building. In CityGML, this is the “cityObjectMember” 
tag. Cursor c2 searches forward until the end of the building 
denoted by the closing “cityObjectMember” tag.

Note that this idea is simple and very fast (see results in 
the “Building Experiments” section) but its simplicity comes 
with a caveat: It does not check if the search string actually 
is an attribute (or an attribute value). You can literally search 
for anything. Even the XML tag name “Building” would 
work. It would simply match all buildings in the whole 
data set. Additional checks are needed to make the query 
results more precise. Our approach therefore also supports 
searching for key-value pairs.

Searching for Key‑Value Pairs

Generic attributes in CityGML are described with 
the elements “str ingAttr ibute”,  “intAttr ibute”, 
“doubleAttribute”, etc. The elements have a “name” and a 
child element called “value”. Based on the idea described 
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above, there are two approaches to identify key-value pairs 
(i.e. matching generic CityGML attributes):

• you can either search for the string representing the 
value, check if the match actually is a CityGML value, 
then move backward to find the corresponding parent 
element, extract its name, and finally compare it with the 
key you are looking for (see Fig. 4), or

• you can search for the string representing the key, check 
if the match belongs to a generic attribute, move forward 
to find its value, and then compare it with the value you 
are looking for (see Fig. 5).

In case of a positive match, you then have to extract the 
building as described above.

Both approaches have benefits and drawbacks. For 
example, a very specific value (e.g. “Empire State 
Building”) might only occur once or a few times in a large 
data set, whereas the key (e.g. “ownername”) most probably 
appears as many times as there are buildings in the data set. 

In such a case, it can be faster to search for the value first 
to avoid unnecessary comparisons and to directly jump to 
the buildings to extract instead. Nevertheless, as we show 
in the “Building Experiments” section, these comparisons 
actually do not have a large performance impact, and 
searching for the key first is interestingly almost as fast as 
searching by value. It also provides the additional benefit 
that you can compare the value not only literally but also 
parse numbers, apply greater than or less than comparisons, 
etc. This flexibility is necessary for more advanced queries.

Advanced Key‑Value Queries

As soon as you have found a CityGML generic attribute 
by key and extracted its value, you can perform advanced 
comparisons. The following list gives a few example 
comparisons that are possible with our approach:

• Convert the value to a number and check if it is less than 
or greater than the value you are looking for (e.g. to get 
all buildings that have more than n storeys)

• Compare the converted number to a numerical range (e.g. 
to find all buildings within a given zip code range)

• Compare the value to a set (e.g. to get all buildings whose 
“usage” is either “commercial” or “domestic”)

Based on the result, you then have to extract the building 
as described above. We have implemented these example 
comparisons and evaluated their performance (see “Building 
Experiments” section).

Bounding Box Queries

Searching for buildings whose geometry is covered by 
a given bounding box is more complex than looking for 
attributes. In the case of CityGML, you have to iterate 
through the entire geometry of a building and compare its 
coordinates with the bounding box.

Figure 6 shows an example of a building geometry. The 
coordinates (more precisely, the x–y–z tuples) can be found 

Fig. 3  General approach to 
search in a text file and extract 
a CityGML building contain-
ing the match at position pi and 
ranging from pi − n to pi + m 
(Image source: [8])

 ...
</bldg:Building>

</core:cityObjectMember>
<core:cityObjectMember>
<bldg:Building gml:id="gml_3KRIUGY6STPLF365ORLR3PIJGYUD5FM57NAB">
<gml:name>Bldg_12210009096</gml:name>

   ...
<gen:stringAttribute name="ownername">
<gen:value>Esrt Empire State Building, l.l.c.</gen:value>

</gen:stringAttribute>
<gen:stringAttribute name="lotarea">
<gen:value>91351</gen:value>

</gen:stringAttribute>
   ...
</bldg:Building>

</core:cityObjectMember>
<core:cityObjectMember>
<bldg:Building gml:id="gml_I0F7CFHURP1IVUBZ74UEN10YGMWKBB29M48P">

   ...

Empire State Building,pi

<core:cityObjectMember>pi - n

</core:cityObjectMember> pi + m

c1

c2

   ...

<gen:stringAttribute name="ownername">

<gen:value>Esrt Empire State Building, l.l.c.</gen:value>

</gen:stringAttribute>

   ... pi

Empire State Buildingvalue

stringAttribute name="ownername"

Fig. 4  Search by value, then skip backward to extract and compare 
key (Image source: [8])

 ...

<gen:stringAttribute name="ownername">

<gen:value>Esrt Empire State Building, l.l.c.</gen:value>

</gen:stringAttribute>

 ...

pi

Empire State Buildingvalue

stringAttribute name="ownername"

Fig. 5  Search by key, then skip forward to extract and compare value 
(Image source: [8])



SN Computer Science           (2024) 5:647  Page 9 of 22   647 

SN Computer Science

in the “gml:posList” element. A geometry typically has more 
than one of such elements. Our approach here is to look for 
the string “gml:posList” first, then extract the tuples one by 
one, convert their items to floating point numbers, and com-
pare them with the bounding box. This has to be repeated 
for all “gml:posList” elements found inside the building. As 
soon as a tuple is not within the bounding box, the corre-
sponding building can be skipped. However, if all tuples are 
in the bounding box, the building is extracted as described 
above.

Note that there are other geospatial relations besides 
covers, such as intersects, touches or overlaps [52]. We have 
already discussed intersects in our previous work [8]. We 
did not implement other relations because they require more 
computational effort and it is not possible to skip individual 
tuples.

Combining Multiple Queries

Multiple queries can be combined using logical operators. 
We implemented the following two operators:

OR
There are two ways to find buildings that match at least 

one of a given set of criteria. As described in the “Advanced 
Key-Value Queries” section, for criteria that refer to the 
same key, you can compare the found values to a range or 
a set. For all other criteria, you have to perform the search 
multiple times (once for each criterion) and then combine 
the results by creating their union.

AND
Finding buildings that match all given criteria at the 

same time works differently. In this case, you initially have 
to find a building that matches the first criterion. Then, you 
have to repeat the search for each other criterion but only 
within the byte range from pi − n to pi + m representing 
the beginning and the end of the building respectively (see 

“Extracting Objects Based on Arbitrary String Matches” 
section). The whole query matches if all individual searches 
are successful.

Implementation

We implemented our approach in a single command line 
application written in Kotlin (running on the Java Virtual 
Machine JVM). For reference, we released it under an open-
source license and made it available on GitHub [53].

Our application supports searching a single file 
(sequentially) or multiple files (in parallel) using multiple 
threads (one per file). It has two modes: In the default 
mode, it performs a single search and then prints the 
extracted buildings to standard out. The benchmark mode 
runs multiple searches (including a warm up phase) and 
does not print extracted buildings. It keeps them in memory 
per search, collects metrics (such as number of buildings 
extracted, number of search hits and misses, etc.), and prints 
statistics at the end. We used the benchmark mode for our 
experiments and recorded the statistics. The results are 
described in the following section.

Building Experiments

We used the enhanced New York 3D Building Model as test 
data set (see “Data Types” section). All experiments were 
conducted on a MacBook (see “Experiment Setup” section). 
We ran each ad-hoc query two times: Once on a single 
file, and another time on the whole data set. As described 
above, our application searches a single file sequentially, but 
multiple files in parallel. For the whole data set, up to 12 
threads (the maximum for CPU of our MacBook) were used.

The following sections give the results of each experiment 
conducted.

Fig. 6  Example of a 
“gml:posList” element from a 
geometry of a CityGML build-
ing (Image source: [8])

<core:cityObjectMember>
<bldg:Building gml:id="gml_3KRIUGY6STPLF365ORLR3PIJGYUD5FM57NAB">
<gml:name>Bldg_12210009096</gml:name>

   ...
<bldg:boundedBy>

<bldg:GroundSurface gml:id="gml_52V6693CTPWOCJXNI9UOBIB6WVANHUN135AW">
       ...

<bldg:lod2MultiSurface>
<gml:MultiSurface srsName="EPSG:2263" srsDimension="3">

<gml:surfaceMember><gml:Polygon><gml:exterior><gml:LinearRing>
<gml:posList>

               988042.890040159 212057.351853728 39.1315999999933
               988086.798744991 212136.782797232 39.1315999999933
               988105.85480924 212126.249025643 39.1315999999933
               ...

</gml:posList>
</gml:LinearRing></gml:exterior></gml:Polygon></gml:surfaceMember>

</gml:MultiSurface>
</bldg:lod2MultiSurface>

</bldg:GroundSurface>
</bldg:boundedBy>

   ...
</bldg:Building>

</core:cityObjectMember>

pi

g g yg g g
<gml:posList>
  988042.890040159 212057.351853728 39.1315999999933
  988086.798744991 212136.782797232 39.1315999999933
  988105.85480924 212126.249025643 39.1315999999933
  ...

i
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Experiment 1: Search by Free Text

Our first experiment was to find the Empire State Building 
in the data set. For this, we applied the approach described 
in the  “Extracting Objects Based on Arbitrary String 
Matches” section and were able to extract a single object. 
Table 1 shows the measured times of the runs with the single 
file and the whole data set. The column “Hits” shows how 
many buildings were extracted. “Misses” denotes how many 
locations of the search string were identified but did not lead 
to an extraction. Since the string “Empire State Building” 
only appears once in the whole data set, there were no such 
cases. As we show below, this column is more relevant in 
the other experiments (e.g. when we find a matching value 
but the key is different). The column “Bldgs/s” shows how 
many buildings were processed per second.

The SSD in the MacBook Pro is fast enough so the single 
736.3 MiB file can be searched within 400 milliseconds. 
The whole 20.91 GiB data set can even be processed within 
6.50 s. Note that multi-threading does not speed up I/O 
performance here but allows the string searching algorithm 
to work in parallel with reading new data, which increases 
the number of buildings processed per second from 60,095 
to 166,683.

Experiment 2: Search for Key‑Value Pairs

In this experiment, we evaluated the performance of key-
value queries. We first searched the data set for build-
ings whose attribute “ownername” equals “Empire State 
Building”. Since there is only one such building in the 
entire data set, we also performed another query where 
we extracted all buildings with a “zipcode” of “10019” 

(Manhattan). As described in the “Searching for Key-
Value Pairs” section, there are two ways to search for key-
value pairs: search by value first, and search by key first. 
Both strategies have benefits and drawbacks and might 
yield different performance. We therefore executed both 
queries with both strategies. Table 2 shows the results for 
the two queries and the two strategies applied to the single 
file and the entire data set.

The results of the by-value search for the Empire State 
Building are comparable to the ones from the previous 
experiment. The queries execute slightly slower because 
in addition to finding the string “Empire State Building”, 
the key of the generic attribute has to be extracted and 
compared to “ownername”. The by-key searches are also 
still very fast. Even though the key “ownername” appears 
1,082,659 times in the whole data set and only one value 
matches “Empire State Building”, the strategy is only less 
than 200 milliseconds slower than the by-value strategy.

Searching by value first appears to be faster than the 
by-key strategy but this only applies to cases like this 
where the search string does not appear very often in the 
data set. If we look at the results of the second query, we 
can see that the by-value strategy is much slower than the 
by-key strategy. The reason for this is not directly obvious. 
The string “10019” appears 352,527 in the whole data and 
“zipcode” appears 1,083,188 times. It seems a lot more 
checks need to be done when “zipcode” is the search 
string. However, the by-value strategy—as described in 
the “Searching for Key-Value Pairs” section—relies on 
checking if the search string actually is a value of a generic 
attribute and on extracting its key. If the search string is not 
a value of a generic attribute but part of a “gml:posList” 
element, for example, a large portion of the file needs to 
be searched backward for the string “gen:value”, which 
is time-consuming. The performance of searching by 
key first, on the other hand, is more predictable and—
compared to the free text search—still very fast.

Table 1  Results of building Experiment 1 (search by free text)

Query Files Run time (s) Hits Misses Bldgs/s

“Empire State 
Building”

Single 0.40 ± 0.01 1 0 60,095

All 6.50 ± 0.14 1 0 166,683

Table 2  Results of building 
Experiment 2 (Search for key-
value pairs)

Query Strategy Files Run time (s) Hits Misses Bldgs/s

“ownername” = “Empire 
State Building”

By value Single 0.43 ± 0.03 1 0 55,902
By key Single 0.52 ± 0.04 1 23,993 46,227
By value All 6.52 ± 0.03 1 0 166,171
By key All 6.74 ± 0.02 1 1,082,658 160,747

“zipcode” = “10019” By value Single 9.53 ± 0.03 1179 29,520 2522
By key Single 0.96 ± 0.03 1179 22,844 25,040
By value All 23.54 ± 0.28 1196 351,331 46,025
By key All 6.71 ± 0.04 1196 1,081,992 161,466
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Experiment 3: Advanced Key‑Value Queries

As described in the “Advanced Key-Value Queries” section, 
searching by key first and then extracting its value allows 
for more advanced operations such as less than and greater 
than comparisons or range checks. In this experiment, we 
performed three different queries: we searched for buildings 
with at least four storeys (i.e. where the attribute “numfloors” 
is greater than or equal to 4), buildings that are located in 
areas with a zip code between 10018 and 10020 (inclusive), 
as well as buildings classified as factories (i.e. where the 
attribute “bldgclass” starts with the letter “F”, which stands 
for ‘factory’ according the list of building classifications 
of the City of New York [54]). The results are shown in 
Table 3.

Compared to the key-value searches from the previous 
experiment, the queries execute slightly slower because 
converting and comparing the values takes more time. 
Finding buildings with at least four storeys is the slowest of 
all three queries because it yields the most hits. Extracting 
buildings is therefore rather time-consuming. The search 
for buildings within a zip code range yields similar results 
as the zip code query from the previous experiment, which 
suggests that the range comparison affects performance only 
slightly.

Experiment 4: Search by Bounding Box

In the geospatial domain, a bounding box is typically speci-
fied by four ordinates (minimum X, minimum Y, maximum 
X, and maximum Y). In this experiment, we performed two 
queries and searched the data set for all buildings that are 
covered by the bounding boxes (987,700, 211,100, 987,900, 
211,300) and the much larger one (950,000, 210,000, 

1,000,000, 220,000). Since our application does not support 
conversion between different spatial reference systems, the 
query must be specified in the same reference system as the 
coordinates in the data set (EPSG 2263, US feet).

Table 4 shows that bounding box queries are considerably 
slower than the queries from the previous experiments. The 
reason for this is that a large number of coordinates need 
be extracted and compared. As described in the “Bounding 
Box Queries” section, our application only supports finding 
buildings that are covered by a given bounding box, which 
helps us skip buildings as soon as we find a coordinate 
outside the bounding box. However, buildings whose 
coordinates are all covered by the bounding box, need to be 
processed completely. The performance of bounding box 
queries therefore highly depends on the data and how many 
buildings actually match.

Experiment 5: Logical AND

In order to evaluate if multiple queries can be combined, we 
also searched the data set for buildings within a given zip 
code range and with at least four storeys. Table 5 shows the 
results of this experiment.

As described in the “Combining Multiple Queries” sec-
tion, our application executes queries with multiple criteria 
by searching for a building that matches the first criterion 
and then searching this building again to evaluate if the 
other criteria also match. This is reflected in the table by the 
additional column “1st hits”, which denotes the number of 
buildings that matched the first criterion. The column “Hits” 
shows the final number of buildings extracted, whereas 
“Misses” gives the number of buildings that contained the 

Table 3  Results of building 
Experiment 3 (Advanced key-
value queries)

Query Files Run time (s) Hits Misses Bldgs/s

“numfloors” ≥ 4 Single 3.59 ± 0.40 18,947 5048 6696
All 9.84 ± 0.34 76,533 1,006,142 110,105

10018 ≤ “zipcode” ≤ 10020 Single 0.96 ± 0.11 1821 22,202 25,040
All 6.75 ± 0.03 1838 1,081,350 160,509

“Bldgclass” starts with “F” (Factory) Single 0.49 ± 0.02 69 23,927 49,057
All 6.65 ± 0.06 4167 1,078,514 162,923

Table 4  Results of building 
Experiment 4 (search by 
bounding box)

Query Files Run time (s) Hits Misses Bldgs/s

Bounding box covered 
by (987,700, 211,100, 
987,900, 211,300)

Single 0.66 ± 0.02 2 609,517 36,421
All 6.76 ± 0.15 2 12,965,392 160,272

Bounding box covered 
by (950,000, 210,000, 
1,000,000, 220,000)

Single 3.25 ± 0.07 9790 309,304 7396
All 6.96 ± 0.07 10,763 12,644,194 155,666
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search string of the first criterion but where the value did 
not match.

The results of this experiment indicate that the perfor-
mance of multi-criteria queries depends on the order of the 
criteria. Searching for buildings within a certain zip code 
range first and then comparing the number of floors is faster 
than the other way round because, in the entire data set, 
there are less buildings in the zip code range than there are 
buildings with at least four storeys (which is reflected by the 

lower number of 1st hits). Since our application is not able 
to predict the outcome of such a query and therefore cannot 
automatically optimize the order of criteria, it is up to the 
user to contribute this knowledge and to specify the query 
accordingly.

Comparison with Existing Solutions

In this section, we compare the results collected above with 
two existing database-driven solutions 3DCityDB 4.1.0 
(with Importer/Exporter 4.3.0) and GeoRocket (latest 2.0 
alpha version from October 2022). For better comparability, 
we configured both solutions to use PostgreSQL as backend.

Table 6 shows the times it took to import the data into 
both applications. With 3DCityDB, this process took about 
two and a half hours for the whole data set. To speed up 
the queries later, we also had to manually create additional 
database indexes on the database relation cityobject_generi-
cattrib containing the semantic attributes. This took another 

Table 5  Results of building 
Experiment 5 (logical AND)

Query Files Run time (s) 1st hits Hits Misses Bldgs/s

(10018 ≤ “zipcode” ≤ 
10020 AND “num-
floors” ≥ 4)

Single 1.11 ± 0.03 1821 1538 22,485 21,656
All 6.80 ± 0.06 1838 1549 1,081,639 159,329

(“numfloors” ≥ 4 
AND 10018 ≤ “zip-
code” ≤ 10020)

Single 2.97 ± 0.03 18,947 1538 22,457 8094
All 7.38 ± 0.04 76,533 1549 1,081,126 146,807

Table 6  Times it took to import the 3D building model into 3DCi-
tyDB and GeoRocket

Files 3DCityDB GeoRocket

Import Single 2 m 25 s 1 m 12 s
All 2 h 37 m 29 s 1 h 00 m 18 s

Create additional 
indexes

Single 12 s –

All 2 m 49 s –

Table 7  Results of executing the example queries using 3DCityDB and GeoRocket

Run times of ad-hoc queries have been copied from above for comparison. Fastest times set in bold

Query Files Run time (s) 3DCityDB Run time (s) GeoRocket Run time (s) Ad-hoc

“ownername” = “Empire State Building” Single 0.92 ± 0.02 0.05 ± 0.01 0.52 ± 0.04
All 0.98 ± 0.07 0.05 ± 0.00 6.74 ± 0.02

“zipcode” = “10019” Single 2.42 ± 0.07 0.30 ± 0.01 0.96 ± 0.03
All 2.52 ± 0.11 0.30 ± 0.01 6.71 ± 0.04

“numfloors” ≥ 4 Single 15.31 ± 0.46 4.85 ± 0.09 3.59 ± 0.40
All 97.53 ± 10.26 7.58 ± 0.68 9.84 ± 0.34

10018 ≤ “zipcode” ≤ 10020 Single 3.19 ± 0.03 3.77 ± 0.17 0.96 ± 0.11
All 15.74 ± 0.48 2.70 ± 0.02 6.75 ± 0.03

“bldgclass” starts with “F” (Factory) Single 1.17 ± 0.01 0.09 ± 0.01 0.49 ± 0.02
All 4.36 ± 0.33 2.54 ± 0.03 6.65 ± 0.06

Bounding box covered by (987,700, 211,100, 987,900, 
211,300)

Single 0.88 ± 0.00 0.05 ± 0.01 0.66 ± 0.02
All 0.89 ± 0.01 0.05 ± 0.00 6.76 ± 0.15

Bounding box covered by (950,000, 210,000, 1,000,000, 
220,000)

Single 9.28 ± 0.55 1.67 ± 0.01 3.25 ± 0.07
All 11.46 ± 0.67 1.61 ± 0.03 6.96 ± 0.07

(10018 ≤ “zipcode” ≤ 10020 AND “numfloors” ≥ 4) Single 2.98 ± 0.04 5.32 ± 0.06 1.11 ± 0.03
All 28.50 ± 3.06 2.66 ± 0.03 6.80 ± 0.06

(“numfloors” ≥ 4 AND 10018 ≤ “zipcode” ≤ 10020) Single 3.01 ± 0.03 6.18 ± 0.24 2.97 ± 0.03
All 28.44 ± 7.78 2.01 ± 0.05 7.38 ± 0.04
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couple of minutes. Although GeoRocket was considerably 
faster, importing still took about an hour.

Table 7 shows the measured times for performing the 
individual queries. Note that we copied the run times of the 
ad-hoc queries from above into the last column for better 
comparison. The fastest times are highlighted in bold. 
Also note that the Importer/Exporter tool from 3DCityDB 
measures the time an operation took in seconds and cuts 
off the fractional digits, which was too imprecise for our 
purposes. We therefore had to compile the tool ourselves to 
print out milliseconds.

As mentioned in the  “Implementation” section, the 
program we implemented for the ad-hoc queries does not 
write extracted buildings to a file in benchmark mode. To 
avoid that writing to disk affected the results of GeoRocket, 
we redirected its HTTP responses to /dev/null. Similarly, 
since the 3DCityDB exporter only supports file output, we 
created an in-memory file system and let it write to this.

Before measuring the run times, we verified that each 
query returned the same number of buildings in 3DCityDB, 
GeoRocket, as well as with the ad-hoc approach. The only 
difference we noticed was with the two bounding box 
queries. While GeoRocket and 3DCityDB find buildings 
based on the intersection of bounding boxes, our approach 
only finds those that are completely covered by the bounding 
box to look for. The ad-hoc implementation therefore returns 
less buildings (i.e. a subset of those returned by GeoRocket 
and 3DCityDB). In order to get the same results, the 
buildings returned by GeoRocket and 3DCityDB would have 
to be filtered in a post-processing step.

GeoRocket does not support searching for attribute values 
that start with a given string. We therefore had to emulate 
the query regarding the building class by a comparison with 
all nine classes F1,… ,F9 defined in the list of New York 
building classifications [54]. In addition, since all attributes 
in the data set are stored as strings and 3DCityDB does not 
support automatic type conversion, we had to specify an 
SQL query that performs an explicit type cast.

Table 7 shows that, in almost all cases, GeoRocket was 
the fastest solution. Nevertheless, ad-hoc queries were on 
par, sometimes even beating GeoRocket. They were also 
in many cases faster than 3DCityDB. This applied to most 
of the single-file queries but particularly to the queries 
regarding the number of floors, the zip code range, as well 
as the boolean combinations thereof. The bounding box 
queries, however, were faster in 3DCityDB and GeoRocket 
because of their spatial indexes. Our approach to compare 
coordinates from gml:posList elements is not very efficient. 
There is room for improvement here. Nevertheless, 
3DCityDB was still very slow for the larger bounding box 
where a greater number of buildings needed to be extracted.

To summarize, ad-hoc queries performed very well 
in general. They achieved times that were reasonable for 

practical use cases and comparable to those of the other 
solutions. In particular, they allowed us to directly work 
with the data without having to wait several hours for it to 
be imported into a database.

Progressive Bounding Box Index Generation

The previous section has shown that the ad-hoc approach is 
practical but database-driven solutions are still considerably 
faster when performing bounding box queries. With ad-hoc 
queries, all coordinates of a building have to be converted 
to numbers and compared with the bounding box. An index 
can speed this up.

In the “Related Work” section, we have discussed existing 
dynamic indexing approaches such as Database Cracking 
[39] and Progressive Indexing [40], which build an index 
on-demand and step by step. These approaches provide a 
good balance between unindexed and indexed queries.

To build upon this idea, in this section, we combine 
progressive indexing with our ad-hoc bounding box search. 
For this, we incrementally create an index and use it to speed 
up later queries. The concrete procedure is now as follows: 

1. If there already is a (probably incomplete) index, use it 
to search for matching buildings

2. Search for buildings in the not yet indexed areas of the 
CityGML file using the ad-hoc approach

3. Expand the index

The index is a linked list with one entry per indexed 
building. An entry contains the bounding box as well as the 
first and last byte position of the building in the CityGML 
file. To add a building to the index, we calculate the center of 
its bounding box and convert it to Morton code [55, 56] with 
a fixed number of bits (which translates to a fixed coordinate 
precision). Morton code defines a space-filling curve (also 
known as Z-order curve), which allows us to sort the index 
entries and create a one-dimensional binary search tree.

To use the index for a query, we determine the Morton 
codes for the lower left and the upper right corners of 
the bounding box to search for. Using binary search, we 
then identify all entries in the index whose Morton code 
lies between these two. They are candidates for hits. Due 
to the fixed bit size of the Morton code and the structure 
of the space-filling Z-order curve, it is possible that more 
candidates are found than there are actual hits. Furthermore, 
it is not guaranteed that the entire geometry of a candidate 
lies within the searched bounding box. After the binary 
search, we therefore traverse all candidates and filter out 
those that do not match.

Each time the user executes a bounding box query, the 
index is enlarged. The first query completely uses the ad-
hoc approach since there is no index yet. However, the first 
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2000 buildings in the CityGML file are parsed and put into 
the index. The second query tries to make use of the exist-
ing (most likely partial) index to find the first matches. It 
then performs a new ad-hoc query starting from the byte 
position after the last indexed building in the CityGML file. 
At the end of the second query, the next 2000 buildings are 
indexed, so the index contains 4000 entries and more bytes 
can be skipped in upcoming queries. This process continues 
until the whole file has been indexed, in which case ad-hoc 
queries are not needed anymore. The number 2000 has been 
chosen empirically and could, in future implementations, be 
made dynamic or be based on a time budget for example.

Figure  7 shows the run times of several sequential 
queries for the bounding box (950,000, 210,000, 1,000,000, 
220,000) on a single file of our test data set, similar to the 
experiment performed in the “Experiment 4: Search by 
Bounding Box” section but with a progressive index. We 
executed 20 sequential queries five times and plotted the 
median run times. At the beginning, a query with index 
(shown in red) is slower than the pure ad-hoc query (blue). 
This is because, in the first query, the index for the first 

2000 buildings is generated, which leads to additional effort. 
The same applies to the following queries, even though the 
process becomes continuously faster, since larger parts of 
the file have already been indexed. After three queries, the 
variant with the index becomes faster than without. This 
point strongly depends on the number of indexed buildings. 
If more buildings are indexed per query, then the first queries 
are even slower, but the index plays out its advantages more 
quickly. On the other hand, fewer indexed buildings per 
query lead to a lower overhead at the beginning, and the 
index provides its performance benefit at a later point.

The 13th query is significantly faster than the previous 
one. This can be explained by looking at the distribution 
of the computing time (see Fig. 8). At this point, the entire 
file has been indexed. This means that no further computing 
time has to be used for indexing. In addition, writing the 
index file can be skipped after the 13th query since it does 
not change anymore.

This experiment shows that a progressive index can 
be beneficial for ad-hoc searches. It combines fast initial 
search with the advantages of an index and represents a 

Fig. 7  Median run times (with 
standard deviations) of sequen-
tial queries for the bounding box 
(950,000, 210,000, 1,000,000, 
220,000) on a single file. Red 
bars represent the run times of 
queries with progressive index-
ing, blue bars represent those of 
ad-hoc queries

Fig. 8  Composition of the run 
time when using an index. In 
the first queries, a lot of ad-hoc 
search is necessary. Later, more 
search is done using the index. 
After the 13th query, the whole 
file is indexed and no ad-hoc 
search is needed anymore
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compromise between the pure ad-hoc query and the use of a 
database-based system. In the future, we would like to build 
on these results and further explore progressive indexes for 
geospatial applications.

Querying Point Cloud Data

In this section, we illustrate our approach to conducting 
queries on raw point cloud data files. We first go over the 
general experiment setup and its differences with regard 
to the building queries. We then show some optimizations 
specific to point clouds, which we implemented to speed 
up the query process. Lastly, we show the results of all 
conducted point cloud queries and discuss them.

Executing Ad‑Hoc Queries on Point Cloud Data

Compared to a textual search, since point cloud data is 
typically binary, each point in every file of the source data 
set has to be examined and compared according to the query 
parameters. This necessitates the following steps: 

1. Loading the appropriate bytes that make up the point 
from the input file(s) into main memory

2. Converting the binary representation into an internal 
point representation that the query application can work 
with

3. Applying the query to the internal point representation 
to decide if the point is a match or not

The expected performance of the first two steps largely 
depends on the file format of the point cloud. Step 1 (loading 
the bytes) will be slower the more bytes a single point takes 
in a given file format. In that regard, a compressed file 
format will be faster to read from than an uncompressed 
file format, as a single point on average requires less 
bytes in the compressed format. Step 2 (converting the 
bytes to an internal point representation) will be faster 
the more closely the binary layout of a point in a given 
file format matches the binary layout of the internal point 
representation in memory. Here, compressed file formats are 
at a disadvantage, since the data first has to be decompressed 
before it can be converted to the internal representation. 
However, even uncompressed file formats can require some 
data transformations. As an example, the LAS file format 
stores point coordinates as normalized integer coordinates, 
often in a local coordinate system based on the bounding 
box of the file. Most applications use floating-point values 
for coordinate representation, so parsing LAS requires a 
conversion from normalized integer coordinates to floating-
point values in world space.

The last step, applying the actual query to the internal 
point representation, is mostly independent of the file format 
and is executed through a linear search. Algorithmically, this 
search could only be sped up if the point data were already 
sorted based on the primary key of the query. In practice, 
this is highly unlikely since the point order is mainly dictated 
by the capturing process. Furthermore, even if the points 
were sorted by a single attribute, such as their classification, 
this order would be useless in speeding up a query based on 
a different attribute. This situation is very well understood 
in the context of database management systems (DBMSs) 
and has been covered in the literature for point cloud data 
by various authors [36, 37].

The goal of this case study is to identify scenarios in 
which ad-hoc queries on point cloud data can be conducted 
sufficiently fast to facilitate certain user interactions. Thus, 
we are aiming at the lowest possible run times for these 
queries. The two major factors that impact run time are the 
file format as shown above and data throughput. We propose 
performance optimizations for both areas and evaluate them 
in the following sections.

Implementation

For the point cloud experiments, all queries were conducted 
using a single command line application written in Rust. For 
reference, we released it under an open-source license and 
made it available on GitHub [57].

Since the used file formats are binary formats, we use 
memory-mapped files for best I/O performance. In contrast 
to the building models scenario, the amount of information 
in a single point is small, so the main factor for query 
performance becomes the point throughput, i.e. how many 
points the application can inspect in a given time. Where 
possible, we executed the query in parallel, inspecting one 
file per logical core on the target machine, similar to our 
implementation of the building data query.

The expected number of positive results from a point 
cloud query can be several orders of magnitude larger than 
the results from a query on building models. Gathering 
the matching points thus has a larger impact on query 
performance than gathering building data. Additionally, 
some queries might end up with so many matching 
points that the result would not fit into main memory. 
To still get reasonable performance measurements, we 
simulate the gathering process through a polymorphic 
ResultCollector type with different implementations 
that either count the number of matching points, print them 
to the standard output, or store them in an in-memory 
buffer. The ResultCollector interface expects a 
point structure containing all attributes for a single point. 
It is called once for each matching point, regardless of the 
underlying implementation. This way, we can simulate 
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the process of extracting the necessary information for 
each matching point independently of any target format or 
application. Measuring the run time of a query using this 
approach gives a good measure of the time that finding and 
extracting the relevant points from the source files takes.

Optimizations

To keep query run times to a minimum, efficient point 
cloud formats are necessary. At the same time, there is 
little flexibility from a practical point of view in coming 
up with new, exotic file formats. The LAS file format and 
its compressed variant LAZ are by far the most common 
formats for storing point cloud data captured from a LiDAR 
(light detection and ranging) scanner. LAS is a standardized 
binary format that stores point records in an interleaved, 
fixed-size format. Each point entry in an LAS file has the 
same size and stores all attributes, such as position, intensity 
or classification, together in memory. Using this format, it 
is possible to skip over all bytes that do not belong to the 
attribute that is queried. Together with memory mapped 
files, this reduces the amount of work for converting to the 
internal point format to a minimum.

Special care has to be taken for queries on LAS data based 
on positions because of the normalized integer coordinates 
that LAS uses internally. The typical behavior of libraries and 
tools that read LAS data is to first convert from normalized 
integer coordinates into floating-point coordinates in world 
space using the offset and scale parameters in the LAS 
header. For bounding box queries, there is a more efficient 
way to do this. Instead of transforming each point into world 

space, the bounding box can be transformed into normalized 
integer coordinates once and checked against the integer 
coordinates. Only for a matching point do we then have to 
perform the transformation to world space.

For the LAZ file format, there is little potential for 
optimization. The compression scheme used in LAZ, a form 
of run-length encoding with a different encoding scheme 
for each attribute, is computationally expensive. The LAZ 
format, while being widely used in the industry, has never 
been officially standardized. We therefore investigated if 
it would be worthwhile to use an alternative compression 
scheme to achieve better performance. We chose the 
LZ4 compression algorithm [58] for this due to its good 
decompression performance.

We developed and tested the following variants of the 
LAS file format:

• LAST, an LAS variant where the memory layout is 
transposed so that data is stored attribute-wise instead 
of point-wise

• LAZER, an LAS variant using the same memory layout 
as LAST, but stored in blocks of a fixed number of points 
where each block is compressed using LZ4, using one 
compression context per attribute

The memory layout of these file formats is depicted in 
Fig. 9. The main idea of the LAST format is to keep relevant 
data for queries close together in memory. This is not a new 
concept, formats such as 3D Tiles [59] use a similar memory 
layout. While it would be possible to just compress a whole 
LAST file using LZ4, this would prevent any form of random 

Fig. 9  The memory layout of 
points in the LAS, LAST and 
LAZER file formats (Image 
source: [8])

Fig. 10  Ad-hoc query process 
for point clouds, consisting of 
the four steps mapping into 
memory (1), decompression 
(2), converting to internal point 
representation (3), and the final 
query by attribute (4) (Image 
source: [8])
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access. Instead, with the LAZER format, we tried to stay close 
to the LAZ format and compressed the data in blocks of a fixed 
number of points, where each block uses a unique compres-
sion context for each of the point attributes within the block. 
Figure 10 illustrates the ad-hoc query process for point cloud 
data in all four tested file formats.

On top of the file-based optimizations, we employ basic 
parallelism by searching each file of the target data sets on a 
separate thread. While this is far from an optimal scheduling 
strategy due to differences in the file sizes, not all point cloud 
file formats support trivial random access so that a single file 
can be decoded by multiple threads.

Lastly, all of the tested file formats in this paper provide 
bounding box information for their points. For the bounding 
box queries, this allows for trivial culling of all files whose 
bounding boxes do not intersect with the query bounding box. 
Especially on large data sets made up of many small files, this 
can lead to a substantial decrease in query execution time.

Point Cloud Experiments

We conducted three experiments for point cloud data:

• Querying point cloud data by bounding box
• Querying point cloud data by bounding box and density
• Querying point cloud data by object class

We converted all of our three point cloud data sets navvis3, 
doc, and ca13 (see “Data Types” section) into each of the 
formats LAS, LAZ, LAST, and LAZER, and ran each query 
on every data set in every format.

As a reference for our queries, we also loaded all data 
sets into a PostGIS database with version 3.1.3 using the 
pgPointclouds extension with version 1.2.1. Data upload 
was done using PDAL [60] with the default configuration 
of grouping points into patches of size 400. Afterwards, we 
manually created a spatial index on the patches. Table 8 shows 
the time that this process took for the three test data sets.

Experiment 1: Bounding Box Query

In this experiment, we tried to simulate a scenario were points 
are queried based on a 3D bounding box, so every point within 
the bounding box has to be extracted from the data set. We 
defined three bounding boxes with different sizes for each 
data set, labeled S, L and XL. They were selected in a way so 

that the S bounding box yields about 1% of the total points, L 
yields about 25% of the total points, and XL equals the full data 
set. For the PostGIS comparison, we used the same bounding 
boxes but converted to polygons in 2D, since PostGIS with 
the pgPointclouds extension does not support spatial queries 
against 3D bounding boxes. We ran two different queries for 
each bounding box, one for finding all intersecting patches 
using the PC_Intersects routine, and one for finding every 
intersecting point using the PC_Intersection routine.

Experiment 2: Bounding Box Query with Maximum Density

In this experiment, we used the same bounding boxes as in 
experiment 1. However, we also added a maximum density 
constraint d to the query result, which guarantees that there 
will be at most one point per d3 cubic meters returned from 
the query. We used a maximum density value of 0.1 for the 
navvis3 data set, 25 for the doc data set, and 100 for the ca13 
data set. The density constraint was applied through simple 
grid-based sampling: space is divided into an even grid 
where each grid cell has a side length equal to the maximum 
density value d . Based on all points that fall into a grid cell, 
only the closest one to the center of the cell is returned in the 
query result. With this experiment, we simulated the typical 
level-of-detail (LOD) approach through spatial subsampling 
that was popularized by Scheiblauer [61] and Schütz [7].

Since there is no equivalent functionality for querying 
points by maximum density in PostGIS using the 
“pgPointclouds” extension, we did not conduct any PostGIS 
queries for this experiment.

Experiment 3: Query by Object Class

In this experiment, we performed a query for all points 
with a given object classification. We ran all queries twice, 
once querying for objects with the object class building 
(classification ID 6 as per the LAS standard), and once for 
querying for an non-existing object class. We chose the 
classification ID 19 for the non-existing object class, as 
this ID was not present in any of the test data sets. Since 
the navvis3 data set does not contain object classifications, 
we conducted this experiment only for the doc and ca13 
data sets. For the PostGIS comparison, we used the PC_
FilterEquals routine which has single-point granularity.

Point Cloud Results

The results of the three point cloud experiments are depicted 
in Tables 9, 10, and 11 respectively. All tables show the 
median run time in seconds for each query, as well as the 
median point throughput, measured in million points per 
second (Mpts/s). The point throughput is not the actual num-
ber of points inspected per second but rather obtained by 

Table 8  Times it took to 
import the point cloud data into 
PostGIS

Data set Import time

navvis3 6 m
doc 1 h 58 m
ca13 7 h 34 m
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dividing the number of points in a data set by the run time 
of the query.

In all experiments, the compressed file formats LAZ 
and LAZER are about an order of magnitude slower than 
the uncompressed file formats LAS and LAST. This is 
unsurprising, as the process of decompressing the data 

is both computationally expensive and prevents skipping 
over irrelevant data. Using a compression algorithm with 
better decoding performance makes little difference, as 
the comparison between the LAZ format and our LZ4-
compressed LAZER format shows. LAZER files achieve 
a throughput that is between 0.84 and 2.03 times that of 

Table 9  Results of point cloud Experiment 1

Point throughput is measured in million points per second (Mpts/s)

Experiment 1—Bounding Box query

Format Runtime (s) Throughput (Mpts/s)

S L XL S L XL

navvis3 LAS 3.52 ± 0.08 3.75 ± 0.11 4.45 ± 0.04 15.94 15.01 12.63
LAZ 17.45 ± 0.06 17.46 ± 0.04 17.45 ± 0.04 3.22 3.22 3.22
LAST 1.86 ± 0.04 2.63 ± 0.07 5.32 ± 0.11 30.22 21.34 10.57
LAZER 12.14 ± 0.06 13.20 ± 0.05 19.18 ± 0.09 4.63 4.26 2.93
PostGIS (patches) 0.01 ± 0.02 0.30 ± 0.08 1.21 ± 0.06 5486.89 190.45 46.46
PostGIS (points) 1.26 ± 0.01 39.95 ± 0.21 220.89 ± 7.59 44.49 1.41 0.25

doc LAS 0.39 ± 0.01 2.69 ± 0.07 9.87 ± 1.40 2200.12 317.56 86.54
LAZ 1.77 ± 0.03 18.14 ± 0.42 53.47 ± 0.60 482.49 47.08 15.97
LAST 0.37 ± 0.01 2.85 ± 0.13 8.36 ± 0.02 2337.68 299.12 102.10
LAZER 0.81 ± 0.03 11.45 ± 0.09 37.68 ± 0.80 1054.32 74.59 22.66
PostGIS (patches) 0.09 ± 1.05 5.91 ± 11.52 21.50 ± 38.45 9064.78 144.49 39.71
PostGIS (points) 18.99 ± 0.10 1023.41 ± 0.45 3771.85 ± 4.23 44.97 0.83 0.23

ca13 LAS 1.02 ± 0.01 6.18 ± 0.05 44.53 ± 1.42 2552.66 421.99 58.57
LAZ 5.44 ± 0.08 39.27 ± 0.35 194.20 ± 2.60 479.41 66.41 13.43
LAST 0.90 ± 0.01 5.18 ± 0.18 36.89 ± 0.24 2884.43 503.77 70.70
LAZER 3.67 ± 0.10 34.70 ± 0.40 155.00 ± 4.90 719.63 75.16 16.83
PostGIS (patches) 1.07 ± 0.40 14.90 ± 5.78 132.05 ± 1.83 2436.96 175.01 19.75
PostGIS (points) 192.47  ±  2.40 2662.58  ± 30.68 13,578.03  ±  77.63 13.55 0.98 0.19

Table 10  Results of point cloud 
Experiment 2

Point throughput is measured in million points per second (Mpts/s)

Experiment 2—Bounding box query with max. density

Format Runtime (s) Throughput (Mpts/s)

S L XL S L XL

navvis3 LAS 3.61 ± 0.08 4.05 ± 0.16 7.17 ± 0.07 15.56 13.86 7.84
LAZ 17.30 ± 0.10 17.80 ± 0.10 17.90 ± 0.10 3.25 3.16 3.14
LAST 1.93 ± 0.07 3.01 ± 0.05 7.63 ± 0.12 29.10 18.68 7.37
LAZER 12.10 ± 0.04 13.60 ± 0.07 21.36 ± 0.07 4.64 4.13 2.63

doc LAS 0.46 ± 0.02 3.44 ± 0.08 11.28 ± 0.30 1854.01 248.31 75.68
LAZ 1.78 ± 0.01 18.67 ± 0.15 57.56 ± 0.17 479.78 45.74 14.84
LAST 0.42 ± 0.01 3.78 ± 0.17 11.81 ± 0.08 2053.87 225.93 72.32
LAZER 0.88 ± 0.02 12.93 ± 0.15 42.97 ± 0.80 970.45 66.05 19.87

ca13 LAS 1.29 ± 0.02 7.89 ± 0.30 53.44 ± 2.31 2025.09 330.51 48.80
LAZ 5.80 ± 0.12 42.60 ± 0.50 204.00 ± 0.80 449.66 61.22 12.78
LAST 1.20 ± 0.02 7.42 ± 0.13 49.57 ± 1.94 2179.32 351.44 52.62
LAZER 3.96 ± 0.07 34.72 ± 0.39 172.70 ± 5.89 658.59 75.12 15.10
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LAZ files, on average about 1.36 times the throughput of 
LAZ.

Transposing the data, as in the LAST format, has a wider 
range of effects. The benefits of transposed data become 
particularly apparent in cases where most points are not a 
match, and where the attribute that is queried only makes up 
a small fraction of the memory of a single point. On average, 
both LAS and LAST achieve about equal throughputs, with 
LAST being slightly faster. However, in certain situations, 
LAST vastly outperforms LAS. On the navvis3 data set, 
together with the smallest bounding box, querying LAST 
data is about twice as fast as querying LAS data, as LAST 
first checks the positions for a match, and only if a match 
is found loads and parses that other point attributes. A 
single LAS point in the navvis3 data set is 26 bytes large, a 
single position only 12 bytes, which explains the two-fold 
speedup between LAS and LAST, as LAST on average 
reads and parses only half as much data as LAS. This effect 
is amplified significantly in Experiment 3, where a single 
classification value is only one byte large. The ca13 data 
set has a very small number of buildings, hence most points 
are not a match in the building query. As a result, querying 
LAST data is almost 20 times faster than querying LAS data, 
achieving point throughputs of over one billion inspected 
points per second on a consumer-grade laptop.

In general, the query performance depends a lot on 
the queried attribute as well as the query parameters. The 
bounding box queries of Experiments 1 and 2 benefit from 
the presence of bounding box information within the file 
headers, and the fact that both the doc and the ca13 data sets 
consist of a large number of small files. This allows for early 
culling of files whose bounding boxes do not intersect the 
query bounding box, which yields very high effective point 
throughputs of between two and three billion points per sec-
ond on the S query. The larger the bounding box, the less 

effective this culling becomes, as more and more files fall 
into the query bounding box. Even without culling, multi-file 
data sets benefit from multiple processor cores, as multiple 
files can be queried in parallel. On the reference system, this 
results in a 5× to 10× increase in point throughput through 
parallel processing alone.

Lastly, adding a density constraint to the bounding box 
queries only has a marginal effect on the query run time. The 
average run time of a bounding box query with maximum 
point density is only 16% higher than without a density 
constraint.

Looking at the PostGIS results, we found that even though 
PostGIS uses a spatial index, run times are often slower 
than simply searching the uncompressed LAS and LAST 
files manually. For spatial queries, finding all intersecting 
patches is very fast using the spatial index, but as soon as the 
more precise PC_Intersection routine is used for obtaining 
single-point granularity, performance drops by one order 
of magnitude for small queries, and up to three orders of 
magnitude for large queries. On top of the raw query run 
time, one also has to take into account the preprocessing 
time required for loading the point cloud data into the 
PostGIS database, which even for a moderately-sized data 
set can take hours.

Discussion

The experimental results for queries on both building models 
and point clouds show the potential of ad-hoc queries as an 
alternative way for users to work with geospatial data. With 
text-based building model data, our ad-hoc query application 
is able to answer most queries in a few seconds, oftentimes 
even outperforming the 3DCityDB system. Only GeoRocket 
is performing significantly faster, especially for simple 

Table 11  Results of point cloud 
Experiment 3

Point throughput is measured in million points per second (Mpts/s)

Experiment 3—Query by object class

Format Runtime (s) Throughput (Mpts/s)

Building Non-existing Building Non-existing

doc LAS 8.74 ± 0.24 8.15 ± 0.21 97.67 104.78
LAZ 62.74 ± 2.29 59.39 ± 0.64 13.61 14.38
LAST 3.73 ± 0.02 0.83 ± 0.03 229.06 1034.24
LAZER 23.66 ± 0.24 21.35 ± 0.11 36.09 40.00
PostGIS (points) 165.68 ± 1.73 5.62 ± 0.03 5.15 151.83

ca13 LAS 44.31 ± 1.62 42.60 ± 2.00 58.86 61.23
LAZ 213.10 ± 2.27 204.47 ± 3.25 12.24 12.75
LAST 2.51 ± 0.23 2.25 ± 0.06 1040.18 1158.96
LAZER 104.76 ± 4.62 104.41 ± 1.73 24.89 24.98
PostGIS (points) 114.78 ± 17.44 110.41 ± 0.56 22.72 23.62
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queries, which is unsurprising as it is using an index to 
answer the queries. The benefit of using an index decreases 
as the number of positive query results increases, as data 
throughput becomes a larger bottleneck. In these cases, 
ad-hoc queries often perform with equal performance to the 
reference database systems. Possibly the biggest downside to 
geospatial database systems is the significant time-loss due 
to uploading and indexing the data, a process that ad-hoc 
queries circumvent completely. Considering the goal of this 
paper to provide individual users with ways to quickly work 
with new or updated data sets, ad-hoc queries on building 
models have thus been demonstrated to fulfill this goal in 
many scenarios.

Concerning the point cloud experiments, we have 
demonstrated that modern commodity hardware is fast 
enough to execute a variety of query scenarios in interactive 
or near-interactive time on these data as well. The fact that 
many point cloud data sets are split into multiple small files 
can be exploited to make ad-hoc queries by bounding box 
very fast, especially if the queried region is significantly 
smaller than the extent of the data set. A common scenario 
that satisfies these criteria are address-based lookups using 
a geocoder, which are quite common in the geospatial 
domain. Combined with the fact that simple grid-based 
LOD representations can be computed with little overhead, 
we conclude that it should be possible to implement a point 
cloud visualization application for these data sets using 
only ad-hoc queries and processing, instead of the time-
consuming preprocessing that is prevalent in the literature. 
Applying some data layout optimizations, such as the data 
transposition of the LAST format, can yield up to an order 
of magnitude speedup, pushing the boundary of possible 
ad-hoc queries further towards multi-billion point data sets.

On the other hand, many point cloud data sets are 
stored in compressed formats. Their decompression 
overhead makes them ill-suited for the kinds of ad-hoc 
queries that we evaluated in this paper. While there are fast 
compression algorithms available, even a highly efficient 
variant such as LZ4 is still at least an order of magnitude 
slower than working with uncompressed data. Depending 
on the use case, resorting to storing point cloud data in 
an uncompressed format might be feasible. Disk space 
is generally assumed to be cheap but data transfer over a 
network might not be. A hybrid solution might store the 
point cloud locally in an optimized, uncompressed format, 
and perform on-the-fly compression whenever data has to 
be sent to a client over the network.

We primarily see the results of the experiments as a 
justification for taking ad-hoc queries into consideration 
when developing applications that have to work with 
geospatial data. Even if the use of a RDBMS or any other 
form of index is warranted in various scenarios, the inherent 
performance of modern commodity hardware should 

not be underestimated. We already identified individual 
users working with new data as one of the main areas of 
application for ad-hoc queries. Beyond that, we see many 
other areas of application, for example to quickly identify 
relevant subsets of larger data sets that can then be indexed 
more precisely. Ad-hoc queries can also be used for quality 
control of data, identifying potential flaws in the data before 
a resource-intensive indexing process has been started. 
Ultimately, we believe ad-hoc queries can become one more 
tool in the toolbox of application developers. In doing so, 
one has to be aware of the downsides of ad-hoc queries: 
They are fundamentally limited by the lack of scalability 
on a single system, so multi-terabyte data sets will yet be 
out of reach for the next couple of years, as will multi-user 
scenarios since a single ad-hoc query can occupy most 
of the system’s resources. On top of that, ad-hoc query 
performance depends heavily on the used data formats. 
Especially for binary formats, an efficient memory layout 
can make a large difference in the expected performance—a 
fact which in our opinion has to be taken into account when 
developing and improving data formats for geospatial data 
in the future.

Conclusion

In this case study, we conducted a series of experiments that 
demonstrate that it is possible to perform common queries 
on raw, unindexed geospatial data in single-user scenarios 
on commodity hardware while achieving interactive or near-
interactive response times. To demonstrate this, we wrote 
two specialized applications based on common search 
algorithms for performing queries ad-hoc on both buildings 
models in the CityGML format as well as point clouds 
in the LAS format and variations thereof. We gathered 
experimental data on the run time of a range of common 
geospatial queries based on user-defined attributes as well 
as bounding boxes and compared our ad-hoc solutions to 
common database management systems. In many of the 
evaluated scenarios, ad-hoc queries can be answered in 
similar or less time than with the database management 
systems, especially taking into account the substantial time 
required for uploading the test data sets into the databases. 
For point cloud queries, we also evaluated how incremental 
changes to common data formats can help achieve 
substantial improvements in query speed. While we found 
compressed point cloud formats to be unsuited for ad-hoc 
queries, the same queries on uncompressed formats seldom 
took more than a few seconds. With the trivial change of 
storing points in a transposed memory layout, we were able 
to achieve query throughputs of more than a billion points 
per second on commodity hardware. Applications could 
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thus benefit if more point cloud data were stored in such a 
transposed memory layout natively.

The experimental results are a strong indicator that in a 
single-user setup, ad-hoc queries are a viable alternative to 
the classic process of uploading and indexing geospatial data 
into a RDBMS. It is noteworthy that our approach is very 
simple, requiring neither sophisticated algorithms nor exotic 
data formats. Since the ad-hoc queries can be conducted on 
raw files, it simplifies and speeds up the access to geospatial 
data, enabling users to quickly interact with and evaluate the 
data. We believe our work can thus form the basis for the 
implementation of on-the-fly query and processing systems 
for various geodata.

While analysis scenarios are typically more forgiving 
when it comes to query run times, visualization applications 
have very strict interactivity requirements. Therefore in 
the future we want to evaluate the quality and usability 
of a visualization application for building models and 
point clouds using only ad-hoc queries. To get rid of the 
shortcomings of unindexed data, we also plan to evaluate 
how ad-hoc queries can serve as guidelines for indexing only 
relevant data on the fly, instead of indexing all data upfront. 
As an example, the sequential scan necessary for ad-hoc 
queries can be used to build a rough index which in turn can 
then be used to guide and speed up future ad-hoc queries. 
Furthermore, our experiment on progressive bounding box 
indexing has shown that the combination of ad-hoc queries 
and adaptive indexing provides a useful balance between 
quick response times and indexing overhead. In the future, 
we would like to explore this idea further and investigate its 
use for geospatial applications in particular.
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