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Summary
Function as a service (FaaS) promises low operating costs, reduced complex-
ity, and good application performance. However, it is still an open question
how to migrate monolithic applications to FaaS. In this paper, we present a
guideline for software designers to split monolithic applications into smaller
functions that can be executed in a FaaS environment. This enables inde-
pendent scaling of individual parts of the application. Our approach con-
sists of three steps: We first identify the main tasks (and their subtasks) of
the application to split. Then, we define the program flow to be able to tell
which application tasks can be converted to functions and how they inter-
act with each other. In the final step, we specify actual functions and pos-
sibly merge those that are too small and which would produce too much
communication overhead or maintenance effort. Compared to existing work,
our approach applies to applications of any size and results in functions that
are small enough—but not too small—for efficient execution in a FaaS envi-
ronment. We evaluate the usefulness of our approach by applying it to a
real-world application for the storage of geospatial data. We describe the expe-
riences made and finish the paper with a discussion, conclusions, and ideas for
future work.
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1 INTRODUCTION

In recent years, the global amount of data has increased dramatically. Images have become larger, models became finer
and updates are made more frequently. All of these data has to be processed and the underlying software must grow with
its requirements.

Just a few years ago, companies operated their own servers. This gave them exclusive access to the machines but was
not flexible enough to handle high variations in load. As a result, applications were moved to the cloud. Today, the large
amount of data requires even more flexible processing. Applications become more powerful, support more operations,
and have to run faster. At the same time, they should be easy to maintain and inexpensive to operate.

Abbreviations: EJB, Enterprise Java Beans; FaaS, Function as a Service; IoT, Internet of Things; WMS, Workflow Management Systems.
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These requirements have led cloud providers to introduce a new processing concept called Function as a Service (FaaS).
In contrast to a monolithic software architecture, FaaS comprises many small functions that act in concert as a common
distributed application. Developers only write function bodies and do not have to deal with the operation of servers,
virtual machines, or even containers as this is managed by the cloud provider. They can focus on a single function without
the need to look at the whole system. This reduces complexity and may lead to increased maintainability, testability, and
reusability.

For cloud providers, each function is independent. They can scale it when required and execute it wherever capacity
is available. As the run time of a function is short, they can quickly change the data center if capacity becomes tight. This
enables the cloud provider to increase resource utilization and offer lower prices. If no data needs to be processed, no
function is running and therefore no costs incur.

Therefore, Function as a Service promises to provide benefits that make it an interesting concept for modern appli-
cations. However, there are many monolithic applications in practical use. They are not written for FaaS and have to be
migrated.

As a first step, a monolithic application can be split into only a few functions. This requires less adjustments, and
larger parts of the existing code can be reused. However, this might reduce the benefits offered by FaaS. Larger functions
cannot be scaled as flexible as smaller ones and might require a longer run time than allowed by the cloud providers.

On the other hand, many fine-granular functions can lead to more communication overhead. Especially if large data
is processed, the network can become the bottleneck of the whole application. The problem gets even bigger, if a function
fails for any reason and has to be invoked again. If the data is included in the function call, it has to be sent again which
results in high traffic. This has to be avoided as it affects the overall performance.

In the end, a good function design is a trade-off. Functions should be small enough to benefit from the advantages
of FaaS but not too small to avoid communication overhead. The resulting problem is not easy to solve and requires a
reasonable planning.

The thoughts that need to be made when migrating an application to FaaS can be summarized in the following three
challenges:

1. Which parts of the application could be functions?
2. How are these parts related to each other?
3. When should two parts of the application be covered in a common function and when in separate ones?

In this paper, we present an approach that solves these challenges. With our contribution we provide a guideline for
software designers on how to migrate their applications to FaaS. Our contribution consists of three steps: identifying the
tasks of an application, defining the program flow, and finally specifying actual functions. Compared to existing work,
our approach applies to applications of any size and results in functions that are small enough (but not too small) to be
efficiently executed in a FaaS environment.

The remainder of the paper is structured as follows: We first review existing works related to FaaS in general and how
existing applications can be transformed (Section 2). Then, we present our main contribution in Section 3. In Section 4,
we apply our approach to an existing application to evaluate its usefulness. Finally, we discuss benefits and drawbacks
(Section 5) and finish the paper with conclusions and ideas for future work (Section 6).

2 RELATED WORK

Leitner et al. analyzed when Function as a Service (FaaS) is used in practice or for what reasons it is not.1 According
to them, FaaS has not found its way into large applications yet. It is mainly used for small applications with up to 10
functions. This includes data or event-driven processing and “glue functions” between larger applications. Well-known
examples include the Internet of Things (IoT) or Chatbots.2 Another field of application is prototyping. Since functions
can be written and deployed quickly, they are ideal for trying things out. However, the step towards larger applications
is taken very hesitantly. Leitner et al. refer to limitations in appropriate programming models as a reason and point out
technical difficulties with FaaS.

There are publications that address these limitations and describe ways to circumvent them. For example, FaaS typi-
cally requires stateless function execution but a shared memory can overcome this Reference 3. Another problem is the
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limited run time, but this limit has increased in recent years and most cloud providers now allow run times between 9
and 15 min. If this is still not enough, Soltani et al. describe an approach to transfer the execution from one function to
another, which results in a new time contingent.4

Cold starts are another problem but they can be handled quite well too. There are approaches to warm up instances by
predicting future function executions5 or keeping instances alive.6 Some frameworks have the possibility to keep generic
instances running and only inject the specific function code when a request is made.7

In summary, many of the technical limitations can be reduced or overcome. However, one major problem remains:
Existing applications can not simply be executed as functions in a FaaS setup. They have to be migrated, which leads to
the question of how to split them up.

A similar question was addressed by Wu et al.8 They investigated the use of microservices in the context of edge
computing. In contrast to FaaS, other criteria such as energy consumption play a much greater role here. Nevertheless,
their work demonstrates the importance of matching software and execution environment.

Modularity is an important part of software development.9 However, its focus is not on the execution in isolated units
but on better maintainability. Even though the code is modular, it is still assembled into a single application for operation.
Evans formalizes a modular application architecture in his book domain-driven design.10 He describes an application
as a set of subsystems with their own contexts. The exact modeling of a system should not influence other systems. For
this, Evans introduces anti-corruption layers. They translate between two systems, enabling isolation. While Evan’s work
provides an important contribution to the overall architecture of an application, it is too general to be applied in the
context of FaaS.

However, Balalaie et al. use it to define microservices.11 The individual services should be cut out of an existing
application using the context bounds of domain-driven design. They pointed out that a good decomposition can lead
to incompatibilities with the existing system. Nevertheless, a perfect setup can only be found if such problems are
ignored at first. This is similar to our approach. In Section 3.1, we split the application into as many parts as possi-
ble, ignoring the associated effort. The final design is determined later, which means that no possibilities are excluded
in advance.

The size of a perfect microservice has been discussed in literature many times. Newman says they should be “small
enough and no smaller”12 and that developers normally have a good sense of what is too big. Once a microservice is no
longer perceived as too big, it is good, he says. Another definition by Richardson suggests that microservices should be
so large that they can be “developed by a small team”.13 The individual teams should work together as little as possible to
ensure a loose coupling of the microservices. Both definitions do not specify a fixed size, but try to steer the development
towards isolated units. This goal is different from FaaS, where a short and stateless execution of the individual functions
is aimed. As a result, migration rules for microservices can only be used in a limited way for FaaS. Often, the services
are still too coarse and must be further subdivided. For example, Newman proposes to leave components that work on
the same database table in one microservice. This way, the table can be isolated better, but in FaaS, this would result in
functions that are too large. Nevertheless, the concepts for migrating applications to microservices can be a useful step
on the way to FaaS functions.

Gysel et al. introduce a rule system for the creation of microservices.14 Using 16 rules, they recommend which compo-
nents of an application should be part of a microservice. They introduce a system that processes a given entity relationship
model and a definition of use cases and analyzes the dependencies. As with Newman, these rules are designed for
microservices and not for short-running functions in FaaS.

Fritzsch et al. compare ten different decomposition methods for microservices and evaluate their suitability
in different situations.15 For this, they classify different approaches according to the required input information.
The groupings range from pure source code to UML diagrams or communication measurements. According to
them, the aforementioned approach of Gysel et al. should be used if no measurements or version control history
are available. However, all evaluated approaches result in an architecture for microservices, which is not suitable
for FaaS.

To obtain FaaS functions finer splits must be made. Hamzeh presents a tool that calculates a score for each method in
an application as to how suitable it is for outsourcing to a FaaS function.16 The decision is based on typical FaaS functions
that are compared to the code in the application. For example, resetting a password was identified as a typical use case
for FaaS functions. The tool scans for keywords fitting to this use case and recommends modeling the associated method
as a function.

Spillner et al. convert Java programs directly to FaaS functions.17 Each class becomes one or multiple functions while
the instance variables are moved to function arguments. As long as no extended language features such as dynamic class
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loading are used, this approach transforms any Java application to FaaS. However, the resulting setup is much slower
than the original application. It is only appropriate for small applications. Spillner wrote a similar program to transform
Python code into functions.18 In comparison to the Java version, only selected parts of the application are moved to
FaaS. The main execution remains local, and whenever an outsourced part is reached, the function is called. However,
similar to the first approach, this one is only suitable for moderately complex Python applications and is accompanied
by a significant drop in performance. Both approaches have the advantage that the transformation from code to FaaS is
done automatically. However, they also show the limitations of automated approaches: they do not work well for large
applications.

To summarize, there are approaches to split large applications, but they result in microservices that are too big for
FaaS. Other approaches lead to small functions but are only suitable for small applications. In our work, we fill the gap
between these approaches and transform a large application into small functions.

3 APPROACH

Our approach to migrate a monolithic application to FaaS consists of three steps. First, the tasks (and subtasks) of the
application have to be identified (Section 3.1). After that, the program flow through the identified tasks has to be speci-
fied (Section 3.2). In a FaaS setup, there is no master component that controls all the others. Instead, the functions are
responsible for calling appropriate successors. The program flow can be used to derive which function calls which other
one. Finally, the actual functions need to be specified. For this purpose, each task is first considered as an independent
function. In some cases, it makes sense to merge two functions together. In other cases, it does not. The rules for which
functions should be combined, are presented in Section 3.3.

3.1 Identifying application tasks

Each application has a reason for existing: it solves one or more tasks. To identify these tasks, we propose a top-down
approach. For this, a graph like the one in Figure 1 can be used.

We start with a root node called “application”. Most applications have some kind of main tasks (e.g., “copy a file” or
“search a database”). The main tasks are the children of the root node.

Each main task can be further divided. For example, searching for data might require parsing a query, accessing
(multiple) data sources, and finally merging the results into a response. These three steps can be considered subtasks.

application

21

task 1

1 2

task 2 task 3

task 7 task 8

task 5

1

task 6task 4

task 9

a

b

c

2

F I G U R E 1 An application consists of multiple tasks. They can be further divided and form a graph. To convert an application to FaaS,
the individual tasks of the application have to be identified as thoroughly as possible.
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WÜRZ et al. 153

The subtasks are ordered. In the example above, parsing the query has to be done before the data sources are accessed.
In Figure 1, this order is given by the small numbers on the edges between parent and child nodes.

To complete one task, only the functionalities of the subtasks are required. A subtask can include further subtasks.
Sometimes, which subtask is actually required depends on the processed data. To model this behavior, we use a special
OR-node in our graph. In Figure 1, it is marked with ∨ (see a©). Depending on the data, exactly one subtask is required
to fulfil the parent task. For this reason, the outgoing edges of OR-nodes have no numbering. Note that the root node
“application” is an OR-node as well because the main tasks are alternatives to each other.

One task can be a subtask of multiple other tasks (see b© in Figure 1). This is often the case when using libraries. The
provided functionality is accessed at many places in the application, so that the corresponding task is a subtask of several
parent tasks.

Finally, a task can have its own parents as subtasks (see c© in Figure 1). This is required by recursive or iterative
algorithms.

As long as the implementation of a task includes multiple classes or consists of several longer methods, the task should
be divided into further subtasks. Finer tasks should be preferred over coarser ones. A coarse task modeling prematurely
limits the function design in the following. On the other hand, tasks that are too fine can be merged again later (see
Section 3.3).

It is difficult to define a rule when a task is fine enough. This depends on the actual application as well as on the
programming language, support from libraries, or implementation details. In object-oriented languages, individual meth-
ods can provide a good orientation, but in any case, it is helpful to ask for the semantic meaning of a code snippet. For
high-level tasks, this question is usually easy to answer. Tasks such as “The code processes an uploaded image” or “It
renders a chart for the requested time range” have a purpose that is easy to understand. They should be further divided
step by step into subtasks. Eventually the descriptions become more technical: “The pixel (x|y) from the image is con-
verted from RGB to HSV color space” or “Missing data is interpolated by neighboring values”. Even without seeing the
associated code, most developers know how to implement tasks like this in a few lines. This can be a good indication for
reaching a sufficiently fine granularity.

By defining the tasks, we answered the first question from the introduction: “Which parts of the application could be
functions?” The identified tasks are at least candidates to be used later for function design.

3.2 Defining the program flow

In the previous section, we created a task graph. It contains all tasks with their respective subtasks. In this section, the
program flow is defined based on this graph. It defines which task calls which other task.

The program flow is an ordered list of triples that may split into multiple branches. Each triple contains the calling
task, the called task and the calling type. For example, one entry could be (Task A, Task B, asynchronous). A
second entry could be(Task B, Task C, synchronous). If these two entries are one after the other in the program
flow list, this means that first task A calls task B with an asynchronous call. Then, task B calls task C synchronously.

Section 3.2.1 provides an overview of the two calling types synchronous and asynchronous along with their strengths
and limitations. Which one to use depends on whether a return value is required or not.

The program flow is initialized in Section 3.2.2. Based on the root node of the task graph the first entries are inserted
into the program flow list.

Section 3.2.3 presents a priority list that is used to determine the further program flow. It operates on the task graph
defined in Section 3.1 and fills the program flow list with triples.

3.2.1 Calling types

Asynchronous calls. If task A does not require a return value from task B, B can be called asynchronously. In this case,
A instructs the FaaS framework to execute B. This has the benefit that A is terminated without waiting for B to finish.
Such a behavior is desirable in view of limited run time and low resource consumption. In addition, failed calls can be
automatically retried at a later time.

Synchronous calls. In synchronous execution, task A calls task B directly. While B is being executed, A continues to
run and waits for the result of B. There is no option to pause A. If it has to wait for data, the task runs idly and causes costs.

 1097024x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3263 by Fraunhofer IG

D
, W

iley O
nline L

ibrary on [10/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



154 WÜRZ et al.

Once the result is available, it can be used in the further execution of A. Such behavior is necessary if A has to return a
result to its caller based on the data of B, or if it needs the results from B for further calculations.

3.2.2 Initialization

In this section, we initialize the program flow with the first triples. Only the root node of the task graph and its children
are considered here. The further program flow is defined in Section 3.2.3.

The root node of the task graph is an OR-node. This means that its children are alternatives, which lead to independent
branches in the program flow.

For each branch, one entry has to be created in the program flow list. This entry represents a call from the root node
to the corresponding child node. The calling type is application-specific. In most cases, the client wants to get feedback
when using the application, which requires a synchronous call. If a response is not necessary, an asynchronous call can
be used.

For the task graph in Figure 1, this leads to three branches of the program flow:

B1 : [ ( a p p l i c a t i o n , task1 , synchronous ) ]
B2 : [ ( a p p l i c a t i o n , task2 , synchronous ) ]
B3 : [ ( a p p l i c a t i o n , task3 , synchronous ) ]

The root node has three children, therefore three branches were created. Each branch consists of a list containing a
single triple for calling the appropriate task. It was assumed that all calls are synchronous.

3.2.3 Priority list

Based on the initialization in Section 3.2.2, the further program flow can be defined. For this, we describe a priority list.
It analyzes the last entry in the program flow together with the task graph from Section 3.1 and suggests the next entry.

The priority list assumes that all branches of the program flow are considered individually. The first case that properly
describes the last entry and the position of the current task in the task graph should be applied. The other cases are ignored.

Assume that the last entry in the program flow is (previous, current, callingType) where previous
and current are tasks from the task graph and callingType is either synchronous or asynchronous.

In the following priority list, task X is mentioned. It is a variable that should be initialized with current.

1. If X is an OR-node, split the program flow into as many branches as there are children. In each branch, add a call to
the child: (current, child, callingType). This calls the child in the same way as the current task was called.
Then continue to trace each branch separately. This way, independent execution paths of the program are defined.
This occurs, for example, if different database backends can be configured in the application, but only one is used at
run time. By separating into different branches, each database backend is handled individually and the architecture
remains flexible.

2. If X has children and these children have not yet been added to the program flow, take the first of them. Resulting from
the construction of the task graph, all child nodes are needed to provide the functionality of the parent node (i.e., X).
We start with the first child node.

If current needs the results of the selected child node (either for its own return value or for further program exe-
cution), then call the task synchronously and add the corresponding triple to the program flow. Continue the program
flow for the selected child. When no more entries are added, current must call another successor task. To do this,
run through this priority list again and apply the first matching situation. This is necessary because current is the
only task still running at this time. Therefore, it must ensure the further execution of the program.

Otherwise, if the result of the called task is not required, an asynchronous invocation is possible. In this case, the
called task takes care of the continuation of the program and current does not need an additional successor.

3. If callingType is “synchronous”, there is no successor. Do not add anything to the program flow. Note that there
cannot be child nodes that have not yet been added to the program flow at this point. Otherwise, the second case of
this priority list would have been applied.
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WÜRZ et al. 155

4. If X has sibling nodes that have not been added to the program flow yet, call the next sibling asynchronously: (cur-
rent, sibling, asynchronous) This call can be asynchronous because current does not need results from
sibling nodes by definition. If this were the case, it would not be a sibling but a child node.

5. If X has a parent, set this parent as the new value for X and go through this priority list again. This way, the task that
takes care of the further program execution is searched.

6. If none of the previously described cases apply, there is no further call necessary and the current branch in the program
flow is finished.

We explain this priority list using the example in Figure 2. We assume that there is only one entry in the program flow:
(A, t, asynchronous). The current task is t and we want to identify the next entry for the program flow.

If possible, the next child node of t is called (case 2). In the example, t has two child nodes: B and C. The first one
that has not been added to the program flow yet is taken. In this case, it is B. The task has to be called synchronously
if t requires its results for further execution. Otherwise, the task can be executed asynchronously. When a task is called
asynchronously, it has to take care of invoking a subsequent task. With a synchronous call, in contrast, the calling task
must ensure the continuation of the program flow. Let us assume t requires results from B and add a synchronous call to
the program flow.

Since B has no child nodes, it will not add any entries to the program flow (case 3). Instead, t calls another task (case 2).
This time, the first child that is not already added to the program flow is C. We assume an asynchronous call and add a
corresponding entry to the program flow.

C has no child nodes, was not called synchronously and has no sibling nodes that are not already added to the program
flow. According to case 5, we look for the successor of the parent task t. Task t has a sibling task D under the common
parent A. Case 4 specifies that this is the successor.

D itself has no successor and neither does its parent node A. This terminates the program flow (case 6). The final list
looks as follows:

[
(A, t , asynchronous ) ,
( t , B , synchronous ) ,
( t , C , asynchronous ) ,
(C , D, asynchronous )

]

Since it is difficult to read such a list, we use a graphical representation in the following. Asynchronous calls are
represented by a single arrow, synchronous calls by a double one. The above program flow is visualized in Figure 3.

1 2
A

1 2
t D

B C

F I G U R E 2 Example task graph to explain the definition of the program flow.

A t B

C D

F I G U R E 3 Graphical representation of the program flow through the example task graph from Figure 2.
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This example is simple and only intended to illustrate the use of the priorities list. For a more complex application,
we refer to the evaluation in Section 4.2.

By identifying the program flow on the tasks, we answered the second question from the introduction: “How are these
parts related to each other?” The program flow defines which tasks have a connection and what kind of connection it is.

3.3 Specifying actual functions

In the previous section, we defined the program flow through the application. It specifies which tasks call which other
ones and whether the calls are synchronous or asynchronous. Now we assume that each task is a separate function. This
gives us a first function setup for the application.

However, the functions are very fine-granular. Sometimes, it is useful to merge two functions into one. In other situ-
ations, it is better to keep them separate. The decision is a trade-off. On the one hand, a fine function setup offers many
benefits, such as better scalability or more precise resource requests. On the other hand, a finer setup requires more effort
during migration and increases communication overhead.

The candidates for merging can be derived from the program flow. If one function calls another, then these two are
merge candidates. Another possibility is when two functions are called after each other by a common parent function. In
this case, the two child functions are also candidates to merge.

Two functions should only be kept separate if the added value justifies the drawbacks. In the following, we describe
six rules to identify situations in which separation makes sense. However, it is always necessary to weigh up how large
drawbacks really are and how much gain there is in return. This answers the third question from introduction: “When
should two parts of the application be covered in a common function and when in separate ones?”

3.3.1 Changing number of elements

If one function produces exactly one output and another function consumes exactly this one output, then these functions
should be merged. Nothing would be gained from keeping these functions separate. Only overhead would be created. The
situation is different if the first function produces n outputs and the second function has to be called for each of them. In
particular, if the execution of the second function should be parallelized to optimize performance, the functions must be
kept separate.

In Figure 4, function A produces several outputs, each processed by B. The functions should be separated so that
multiple instances of B can be called at the same time.

3.3.2 Alternative functions resulting from OR-nodes

Functions based on OR-nodes should also be separated. Depending on the input, a different successor function is called.
Merging these functions would lead to a function containing logic that is not used in every call. This wastes resources as
the unneeded parts require memory and have to be initialized.

In Figure 5, A, B and C should form their own functions. Depending on the input, the program flow goes through
either B or C, but not both. If other alternatives to B and C could be added in the future, it makes even more sense to
separate them. This way, the system remains extensible.

A

B

B

...

F I G U R E 4 If one call of A leads to many calls of B, the functions should be kept separate. This way, the execution can be parallelized.
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WÜRZ et al. 157

If separating into three functions causes too much overhead, an intermediate solution can be chosen. In this case, A
is duplicated and merged with B as well as with C, resulting in two functions. As a consequence, the case discrimination
moves up to the caller of A. This variant is helpful if A is called from a place where all the information to select the correct
function is given anyway. However, it makes maintainability more difficult, because two functions have to be adapted
each time A is updated.

3.3.3 Multiple uses

If a function is part of several branches of the program flow, it should be kept separate. In Figure 6, C is required by both A
and B. Without separation, all three functions would have to be merged into a common function. This should be avoided
because A and B are alternatives.

Like in Section 3.3.2, there is an intermediate solution. If three functions cause too much overhead, C can be duplicated
and merged with A and with B. Like before, this may cause issues in maintenance because an update of C requires a
redeployment of A and B.

3.3.4 Varying resource requirements

If the resource requirements vary greatly between two functions, they should be separated. An example could be a
short-term, very high memory requirement. This is shown in Figure 7 by the enlarged box of B. A function containing A
and B must be started with a correspondingly high memory limit but only uses this for a fraction of the run time. As a
result, resources are wasted.

A

B

C

F I G U R E 5 If only a subset of the functionality is used, the functions should be separated. In this case, three individual functions
would be better than a big one.

A

B

C

F I G U R E 6 If C is needed at several places, it should be a function of its own.

A

B

F I G U R E 7 If one function requires much less resources than another function, they should be kept separate.
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158 WÜRZ et al.

A B

F I G U R E 8 If the two functions A and B would be merged together, their total run time is longer than allowed by the cloud provider.

BA

F I G U R E 9 A and B are too different and cannot be merged.

3.3.5 Long-running functions

If the expected run time of a function is already close to the limit defined by the cloud provider it should not be merged
with another function. The total run time could exceed the limit and lead to an abortion (Figure 8).

3.3.6 Too different functions

Sometimes, two functions cannot be merged because they are too different. This can be the case if they are maintained by
two development teams that work independently of each other. Another reason might be that two different programming
languages with different requirements for the environment are used (Figure 9).

4 EVALUATION

We applied our approach to a real-world application called GeoRocket.19 GeoRocket is a data store for very large geospatial
objects. It creates an index for the data that can be used for queries. For example, a client can import a whole city model
and query only the downtown area. To do this, GeoRocket breaks down each data set into small chunks. A chunk can be
a simple geometry in a set of polygons or even a house in a 3D city model. All chunks are assigned an ID and put into
a store. The metadata for each chunk is saved in an index. When querying, the required chunks are identified via the
index and then retrieved from the store. More information regarding the internal architecture can be found in the paper
by Krämer.19

Since a monolithic implementation already exists, GeoRocket is a good example to evaluate our approach. The aim of
this section is to create a plan for migrating GeoRocket to FaaS.

4.1 Task analysis

GeoRocket implements the CRUD operations create, read, update, and delete. Note that geospatial objects can only be
created, read, and deleted. They are immutable. An object that should be updated has to be deleted, and the new version
has to be imported again. Nevertheless, GeoRocket offers the possibility to attach tags and metadata properties to existing
objects, which can be updated later on.

Figure 10 shows an overview of the tasks performed by GeoRocket. From top to bottom, the tasks become more and
more detailed. While the second row contains only the four CRUD operations, the third row already contains many sub-
tasks. The application task GeoRocket as well as the tasks Split, Parse and Merge are OR-nodes. Only one of their children
has to be executed to complete the task. Which one depends on the content of the request. For example, GeoRocket can
handle XML as well as JSON data, and the internal logic has to distinguish between them.
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GeoRocket

2 31

Create

1 2 3 4

Read

Receive

1 2

Import

1 2

Index

Split Store

Split
XML

Split
JSON

Parse

Parse
XML

Parse
JSON

Save

Query

Fetch

1 2

Merge
XML

Merge

1 2

Merge
JSON

Deliver

1 2

Update

Parse
Query

1 2

Delete

Remove

F I G U R E 10 Tasks graph for GeoRocket. The root node represents the whole application and can be divided into several subtasks.

To add new data (see Create node in Figure 10), the input file is first received through an HTTP endpoint. Then, each
file is imported. This includes splitting the file into chunks and storing each of them. Finally, each chunk is indexed by
parsing it and saving the results in an index. Since the import of new data takes some time, GeoRocket does not provide
a direct feedback to the client at this point. The request is terminated before all data has been processed (i.e., it is an
asynchronous operation).

Reading data always also includes searching for it in the index. The index returns one or more chunk IDs matching
a given query. The actual search takes place in the index and is not part of the application. The obtained chunk IDs can
be used to fetch the chunks from the storage. The chunks are then merged into one file and delivered to the client. It has
to be noted that these steps might need to be repeated for large responses. If the queried data contains too many chunks,
GeoRocket starts merging the first ones and streams the result to the client. Afterwards, it queries the next chunk IDs and
continues merging them into the output stream.

Deleting is very similar to reading data. GeoRocket runs a query against the index and receives the IDs of the chunks
to be deleted. Afterwards, these IDs are used to remove the chunks from the store.

Updating data is a special case in GeoRocket, which also becomes apparent in the division of this task. As mentioned
above, the data stored in GeoRocket is immutable, but metadata properties and tags can be attached to chunks and modi-
fied later. Tags and properties are only saved in the index. If they are changed, only the corresponding entries in the index
have to be updated. There is no need to access the data store with the actual chunks.

4.2 Program flow

The root node GeoRocket in Figure 10 is an OR-node that has four children. For each of them, we initialize the program
flow with one branch (see Section 3.2.2). In addition, there are two more OR-nodes below Create and one below Read,
each with two children. At all these points, the program flow splits (see case 1 in Section 3.2.3) so a total of eight different
branches exist at the end. For the sake of conciseness, we only explain the branch for adding XML data in detail. The
other branches can be defined in the same way.

Figure 11 illustrates the final branch for adding XML data. A single arrow represents an asynchronous
call in which the caller does not expect a response from the called task. A double arrow indicates
a synchronous call.

When the client adds data to GeoRocket, the Create task is used. To find the successor of Create using the priority
list in Section 3.2.3, the first step is to check if child nodes exist that are not already added to the program flow. This
is the case and Receive is the first of them. It is selected as the successor. The client should get feedback about whether
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GeoRocket Create Receive

Import Split SplitXML

StoreIndexParseParseXMLSave

F I G U R E 11 One branch of the program flow through the application.

the transfer was successful or not. For this reason, Create must wait for a success message from Receive. So this call is
synchronous.

Receive has no successor because no children exist and it was called synchronously. However, a successor for
Create has yet to be identified. The next child node that is not already added to the program flow is Import.
In this step, the received data is divided into small chunks and stored afterwards. Since this can take some
time, GeoRocket does not include its result in the response to the client. Instead, after new data is successfully
received, the request is terminated. Create therefore does not need a response from Import and can call the task
asynchronously.

The successor of Import is its first child: Split. The call can be asynchronous again, since Import does not need to
process the results of Split. Split is an OR-node, so its children are alternatives. In the branch of the program flow illustrated
in Figure 11, the child Split XML was considered. Since Split was called asynchronously, the request to Split XML can be
asynchronous too.

According to Section 3.2.3, the successor of Split XML is Store. Split XML has no children, was not called synchronously
and has no siblings—as a reminder, all children of OR-nodes are considered in different branches of the program flow.
Therefore, its successor is the successor of the parent node Split. Split also has no other children, was also not called syn-
chronously, but has a sibling node Store. The call can be asynchronous again, since Split XML does not expect a response
from Store. Store takes the chunks generated by Split XML and puts them into the store.

Store has no children itself, has not been called synchronously, and has no siblings. Therefore, its successor is the
successor of Import, namely Index. Index parses each chunk and extracts metadata. This information is then saved in an
index and can be used later to query chunks.

Finding successors at this point is equivalent to Import. The last task is Save. It has no successor, so the branch of the
program flow ends here.

The other branches can be defined in the same way. It should be noted that asynchronous calls cannot be used for the
Update, Delete, and Read branches, since GeoRocket uses all results from the subtasks for the response to the client. The
final program flow including all branches is shown in Figure 12.

4.3 Function definition

In the previous section, we defined the program flow. Now we consider each task (illustrated as a box in Figure 12) as a
function candidate. This section examines which of them can be merged. For this, we analyze which of the rules from
Section 3.3 can be applied to the program flow. For the sake of brevity, we focus on adding new data to GeoRocket, which
is the most complex branch. The other branches can be treated analogously.

The corresponding merge candidates have been marked in Figure 12 with red circles. In the following list, we explain
which functions should be merged into one and which should not. For this, we identify matching rules from Section 3.3
and estimate the possible gain. In addition, we estimate how large the overhead is for a separation.

1© GeoRocket ↔ Create
Benefits when separating: Medium
Rule 3.3.2: GeoRocket is an OR-node. Create, Update, Delete and Read are alternatives. Merging GeoRocket and Create
would lead to unnecessary logic, for example when Update is called. However, the overhead is not particularly high
because the main work is done in the sub-functions.
Benefits when merging: High

 1097024x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3263 by Fraunhofer IG

D
, W

iley O
nline L

ibrary on [10/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WÜRZ et al. 161

Update Parse
Query

Geo
Rocket Create Receive

Import Split
SplitXML

Store

IndexParse
ParseXML

Save

SplitJSON

ParseJSON

Read Query

Fetch

Merge
MergeXML

Deliver

Delete
Remove

1 2

3

4
5 6

7

8
910

MergeJSON

F I G U R E 12 The program flow in the entire application. The merge candidates when adding new data to GeoRocket are marked with
red circles. They are explained in Section 4.3.

Often, new data is large. If it has to be sent from one function to the next, this causes a high communication overhead
that can be avoided by merging.
Result: Merge

2© Create ↔ Receive
Benefits when separating: Low
No rule can be applied.
Benefits when merging: High
Same argumentation as in 1©.
Result: Merge

3© Create ↔ Import
Benefits when separating: High
Rule 3.3.1: When data is added to GeoRocket, it might consist of multiple files. Each file has to be imported. So, one
call of Create leads to several calls of Import. To enable parallel processing, the functions should be kept separate.
Rule 3.3.5: If Create and Import were merged into one function, the maximum run time could easily be exceeded as
it scales with the number of files to be imported.
Benefits when merging: Medium
In total, the entire new data set must be transferred. However, the amount of data is distributed over all calls to Import,
so that a single function invocation is no longer particularly large.
Result: Separate

4© Import ↔ Split
Benefits when separating: Low
No rule can be applied.
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162 WÜRZ et al.

Benefits when merging: Medium
A separation would lead to an additional transmission of each new file.
Result: Merge

5© Split ↔ Split XML / Split JSON
Benefits when separating: Medium
Rule 3.3.2: Split is an OR-node and should be separated from its children.
Benefits when merging: Medium
A separation would lead to an additional transmission of each new file.
Result: Merge but distinguish between JSON and XML before 3©

6© Split XML / Split JSON ↔ Store
Benefits when separating: Medium
Rule 3.3.1: The split functions generate multiple chunks. Each of them must be stored so that one call of Split XML
or Split JSON lead to multiple calls of Store Rule 3.3.3: Both semantic split functions call Store.
Benefits when merging: High
Store is a pure I/O operation that contains very little logic of its own. The resulting communication overhead when
separating is therefore disproportionate to the gain.
Result: Merge

7© Store ↔ Index
Benefits when separating: High
Rule 3.3.1: Since the Store function was merged with the split functions in 6©, one invocation of Store leads to many
invocations of Index. Rule 3.3.3: Since Store was merged, there are still two functions that are calling Index. Rule 3.3.5:
If Store and Index were merged into one function, the maximum run time could easily be exceeded as it scales with
the number of extracted chunks. If a file contains many chunks, the total run time might be longer than allowed.
Benefits when merging: Low
Only the ID of the chunk has to be transmitted.
Result: Separate

8© Index ↔ Parse
Benefits when separating: Low
No rule can be applied.
Benefits when merging: Low
Only one additional function call with the chunk ID would be necessary in the case of a separation.
Result: Merge

9© Parse ↔ Parse XML / Parse JSON
Benefits when separating: Medium
Rule 3.3.2: Parse is an OR-node and should be separated from its children.
Benefits when merging: Medium
If these functions were separated from each other, the function containing Index and Parse would be very small and
only a glue function between the chunk creation and parsing.
Result: Merge but distinguish between JSON and XML before

10© Parse XML / Parse JSON ↔ Save
Benefits when separating: Medium
Rule 3.3.1: The parse functions generate multiple results. All of them have to be saved. Rule 3.3.3: Both semantic
parse functions as well as the Update function call Store.
Benefits when merging: Medium
Save is a pure I/O operation that contains very little logic of its own. The resulting communication overhead when
separating is therefore disproportionate to the gain.
Result: Merge

Figure 13 shows the resulting grouping of the functions. Like before, a synchronous call is represented by a double
arrow and an asynchronous call by a single arrow. This results in a total of ten functions, with GeoRocket being the
entry function that calls all the others. In comparison to Figure 12, many function candidates were combined to reduce
communication overhead and the distinction between data types was shifted forward. This resulted in some duplicated
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F I G U R E 13 The final function design after merging.

tasks for adding new data as well as for reading them. However, these duplications made it possible to reduce the number
of function calls, enabling a more efficient processing.

4.4 Performance

We implemented the presented concept and run it with the FaaS framework OpenFaaS20 (helm chart version 8.0.4) on
top of Kubernetes21 (version 1.22.5). Kubernetes was installed on three virtual machines with 4 cores and 16 GB of RAM
each. For comparison, we installed the existing monolithic version of GeoRocket (version 1.3.0) on three other instances
with the same hardware configuration. For the monolithic evaluation, incoming requests were distributed to one of these
instances by an nginx proxy using round robin. We imported a public LoD 2 model of the city of Cologne (Germany)22

with the FaaS version as well as with the monolithic implementation. The dataset consists of 479 CityGML files with a
total size of 7.7 GB. The monolithic implementation took 59 min while our approach with OpenFaaS is 19% faster and
needs only 48 min (see Figure 14).

If a new data set is imported via the FaaS implementation, the split function gets called for each included file.
Because of the asynchronous invocation, the request is stored in a queue until it can be processed. Figure 15A visu-
alizes the queue length (orange line). Right at the beginning, the number of queued split calls increases fast. The
reason is that not enough instances of the split function are started yet. This changes a few minutes after start as
shown in Figure 15B. In response to the increased queue length, the split function is automatically scaled up to the
configured maximum of 10 instances. The queue continues to grow, but at a much slower rate than at the begin-
ning. The blue line in Figure 15 shows the queue length and the number of function instances for indexing. After
a file was split into chunks, the indexer function analyses each of them. It is an asynchronous call again, so the
requests are stored in a queue. This is where the flexibility of FaaS becomes apparent: sometimes the queue is a
bit longer, in which case more function instances are started. As soon as the queue is shorter again, these addi-
tional instances are terminated. In the end, this flexibility enables a faster run time in comparison to the monolithic
implementation.
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164 WÜRZ et al.

F I G U R E 14 Comparison between the monolithic version of GeoRocket with our OpenFaaS implementation when importing a city
model. Both setups use 3 VMs with 16 GB of RAM each.

(A) Queue length (B) Function instances

F I G U R E 15 Queue length of pending asynchronous function calls and number of split / index function instances during the import of
a city model.

5 DISCUSSION

In this section, we critically examine our approach and identify potential limitations. Section 4 showed that the approach
is well suited for the migration of GeoRocket. Nevertheless, the question arises whether this applies to all kinds of
applications.

The first difficulty is that the developer has to know the application very well. Otherwise, the definition of the tasks
and the program flow would not be possible. The only solution to solve this problem is automated analysis of the source
code. This has already been investigated by other works (see Section 2) and is not suitable for larger applications. This is
also due to the fact that an estimation of the communication overhead is necessary when deciding between merging and
separating of functions. For this, the developer must know which data is processed, how large it is and how frequent a
function is executed. This is hard to do automatically. A developer can use the presented approach to analyze applications
of any size. Nevertheless, nothing is for free. It should be noted that the larger the application, the more effort is needed to
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WÜRZ et al. 165

identify tasks, assess impacts, and derive the final functional design. This inherent problem will remain, but the developer
can be supported by the presented approach.

The second difficulty is that people can make mistakes. When deciding to separate a function, a trade-off must be made
between the resulting benefits and drawbacks. Sometimes, this decision is clear, sometimes it is not. For example, for
merge candidate 5©, the decision was made to perform a case discrimination between XML and JSON data before 3© and
then merge the semantic split functions into the previous functions. This resulted in many duplicated tasks. Alternatively,
Split XML and Split JSON could have been merged into one big function. This would have avoided duplicating three other
tasks. There is no right or wrong at this point, only pros and cons that need to be weighed up against each other. The
approach presented in this paper helps developers to make reasonable decisions in this respect. To verify the decision, the
resulting setup can be benchmarked in comparison to the monolithic version as other works suggest for microservices23

or large distributed systems.24

Other works exploit the structure of the source code during the migration process. For example, Escobar et al. use
Enterprise Java Beans (EJB) for a breakdown into microservices.25 This enables more knowledge to be gained from the
underlying programming language, but it limits the approach to applications written in that language. Our approach is
independent of the implementation but requires more effort in defining the program flow. Nevertheless, the program
flow indirectly depends on the implementation. If the monolith is poorly written, then it can be more difficult to identify
the individual tasks. For example, an application in Java provides a good indication of possible tasks through its class
structure. An old procedural PHP implementation makes this process much harder.

There are some applications that are unsuitable for running in a FaaS environment. This applies, for example, to
applications that have tightly coupled components. In such applications, a lot of communication overhead would be
incurred if they were split into functions, since a large amount of information would have to be exchanged. Another
example are applications that have to read or write a lot of data. Here, an execution as FaaS is also associated with a high
communication overhead. The presented approach will not lead to a good FaaS setup in these cases. However, it will
become apparent while attempting to define functions that it is best to merge all of the individual tasks. If a developer
observes such a behavior, then consideration should be given to whether running as FaaS is actually the right way to go.

Finally, it should be considered that parallelization is only supported in the form of loops (see Section 3.3.1). If a task
produces multiple outputs and each of them is processed by a different function, then this can be done in parallel. On the
other hand, if two processes are started independently, then this behavior cannot be modeled with the presented approach.
This decision was made to keep the approach concise. However, if needed, another node type for parallelization could be
added in the task graph. Its children would all be executed in parallel. They have no order (as in OR nodes), but would all
have to be executed (as in normal nodes). This raises interesting questions regarding how to synchronize the execution
at the end of the parallel part, how to call subsequent tasks after parallelization, and who is responsible for that. We will
address this important topic in a future work.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to decompose an existing monolithic application into functions for Function as
a Service. We used three steps that correspond to our original questions in the introduction Section 1: First, we proposed
to identify the main tasks of an application and further refine them to obtain a task graph (Section 3.1). Subsequently, we
presented a priority list that can be used to identify the program flow through the task graph (Section 3.2). This results in
a list of triples, each indicating which task calls which other task and whether this call is synchronous or asynchronous.
Finally, we presented six rules that can be used to decide whether two tasks should be combined into one function or
whether two separate functions are better (Section 3.3).

This solved the challenges from the beginning. The identified tasks of an application can be considered as a single
function. They are related via the program flow and can be called either synchronously or asynchronously. The rules
from Section 3.3 provide suggestions for situations when two functions should be merged and when they should be kept
separate.

The suitability of our approach was demonstrated using GeoRocket as an example. The tasks of GeoRocket resulted
from a stepwise refinement of the four main tasks Create, Read, Update, and Delete. Subsequently, the program flow
through the application was determined. This took into account which information is required to respond to a request
and when asynchronous function execution is possible. Finally, the functions were merged until the communication
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overhead no longer outweighed the benefits of FaaS execution. The result was an application with ten functions that
together represent the functional scope of the monolithic application.

In the future, we will investigate whether the speed of the FaaS version can be further increased. As addressed in
Section 2, cold start is a problem of FaaS that can be solved by prewarming containers. While existing approaches rely on a
prediction of future function calls, we can make a more confident statement by using the program flow. This includes not
only which function will be called next, but also how often. We want to exploit this additional information and enable the
FaaS framework to scale the functions in a more efficient way. This can reduce latency for function invocations, leading
to faster processing.

Additionally, we will investigate the connections with workflow management systems (WMS). In WMS, the processing
of data is structured in workflows. They consist of different services that receive data, process it and produce output. This
output is used as input for subsequent services. A future work should investigate to what extent the services in WMS can
be replaced by functions in FaaS. In this way, a monolithic application can first be broken down into functions, which
then become services in a WMS.
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