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 A B S T R A C T

In previous work, we have presented an approach to index 3D LiDAR point clouds in real time, i.e. while they 
are being recorded. We have further introduced a novel data structure called M3NO, which allows arbitrary 
attributes to be indexed directly during data acquisition. Based on this, we now present an integrated approach 
that supports not only real-time indexing but also visualization with attribute filtering. We specifically focus 
on large datasets from airborne and land-based mobile mapping systems. Compared to traditional indexing 
approaches running offline, the M3NO is created incrementally. This enables dynamic queries based on spatial 
extent and value ranges of arbitrary attributes. The points in the data structure are assigned to levels of detail 
(LOD), which can be used to create interactive visualizations. This is in contrast to other approaches, which 
focus on either spatial or attribute indexing, only support a limited set of attributes, or do not support real-time 
visualization. Using several publicly available large data sets, we evaluate the approach, assess quality and 
query performance, and compare it with existing state-of-the-art indexing solutions. The results show that our 
data structure is able to index 5.24 million points per second. This is more than most commercially available 
laser scanners can record and proves that low-latency visualization during the capturing process is possible.
1. Introduction

Geospatial point clouds are becoming increasingly important in 
many areas. For example, architects and urban planners use them in 
building construction projects [1] or for urban infrastructure plan-
ning [2]. Other applications include the rollout of fiber optic lines [3], 
district heating planning [4], or flood modeling [5]. On a larger scale, 
point clouds are used to generate digital elevation models [6] and for 
the mapping and regular monitoring of forests [7] or railway lines [8].

Point clouds are captured using airborne or land-based mobile 
mapping systems equipped with LiDAR (Light Detection And Ranging) 
technology [9,10]. LiDAR scanners are becoming more and more pre-
cise and record millions of points per second. These points contain 
not only spatial coordinates but a variety of attributes such as color, 
GPS time, and the intensity of the reflected laser beam. More attributes 
such as the 3D normal for each point or its semantic classification can 
be derived from the recorded information and are often also included 
in the final result. The LAS specification [11], a widely used point 
cloud file format, defines a range of possible attributes. Fig.  1 shows 
screenshots of a few selected ones.
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LiDAR-recorded geospatial point clouds are usually very large, both 
in terms of data volume and area. It is not uncommon that datasets 
reach sizes of many terabytes. Some of them even cover whole coun-
tries, e.g. the AHN4 dataset of the Netherlands [12]. Analyzing and 
visualizing such large datasets requires sophisticated out-of-core accel-
eration structures. While spatial indexes enable fast access to specific 
areas of the point cloud in different levels of detail, attribute indexes 
allow the points to be quickly filtered based on given criteria or value 
ranges. A combined index, for example, would be able to return all 
points that lie within a given spatial extent (or bounding box), have 
been recorded in a certain period of time, and belong to a specified 
class (e.g. Tree or Building).

The process of creating such an index is called indexing. The current 
common practice is to index point clouds offline, i.e. some time after 
they have been recorded with tools such as Schwarzwald, PotreeCon-
verter, or Entwine [13–15]. This out-of-core process often takes several 
hours and doing it later unnecessarily extends the time it takes from 
recording the data until it can actually be utilized.

Many applications, however, could benefit from a more immediate 
access. For example, if regular processes such as railway monitoring for 
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Fig. 1. Different point attributes of the datasets used in this paper colored by value.
predictive maintenance could make use of the data right after it has 
been acquired, they would be able to react much quicker to imminent 
faults. The same applies to emergency cases (e.g. earthquakes or floods) 
where immediate availability of analysis results is key.

Going one step further, analyzing and visualizing a point cloud 
already while it is being recorded would enable real-time quality 
assurance. Errors in the recording or missing spots could immediately 
be displayed to the operator (e.g. on a tablet computer) who could 
then directly fix them. This would avoid having to repeat the data 
acquisition process later, which is time-consuming, cost-intensive and, 
again, extends the time until the data can be put into use.

Processing LiDAR point cloud data in real time is, however, rather 
challenging as modern laser scanners record millions of points per 
second. A real-time indexing algorithm has to be able to process points 
at least as fast as the laser scanner produces them. In addition, querying 
the index during acquisition (e.g. for live quality assurance) requires it 
to be responsive and to return results quickly.

In previous work, we have already presented an approach to in-
dex 3D LiDAR point clouds in real time, i.e. while they are being 
recorded [16]. We have further introduced a novel data structure called 
M3NO, which allows arbitrary attributes to be indexed directly during 
data acquisition [17]. Based on this, we now present an integrated 
approach that supports not only real-time indexing but also interactive 
visualization with attribute filtering. It allows the point cloud to be 
spatially queried based on a bounding box or a view frustum, and 
to be filtered by ranges of attribute values. At the same time, the 
index contains a level-of-detail structure and can therefore be used for 
interactive visualization. Spatial and attribute filters determine which 
parts of the point cloud should be returned at the desired level of detail.

For reproducibility, our implementation called Lidarserv is available 
under an open-source license on GitHub [18].

1.1. Goals

For the design and evaluation of our integrated approach, we define 
the following research goals:
G1 – Real-time indexing. Our indexing algorithm should be able to 
insert points into the M3NO structure at least as fast as they are being 
recorded by a typical commercially available laser scanner.
G2 – Query data reduction. The amount of data that needs to be loaded 
into memory during querying relative to the size of the result set is a 
quality metric for every index. Our goal is to eliminate as many octree 
nodes as possible early in the query process to reduce the number of 
points that need to be loaded from disk.
2 
G3 – Query time reduction. Compared to naive sequential filtering with-
out an index, our data structure should substantially decrease the query 
execution time. Furthermore, the query times should be comparable or 
better than those of existing approaches.
G4 – Real-time visualization. Our data structure should allow users to 
interactively explore the data while it is being recorded and to perform 
filtering queries that update the scene in real time. The time that passes 
between the recording of a point until it is displayed on screen (latency) 
should be minimized.

1.2. Contributions

As mentioned above, we put together the building blocks from 
our previous works [16,17] into an integrated system. Based on the 
results of the extended evaluation of the indexing performance and 
visualization latency (see Section 7), we are now able to show that real-
time visualization of 3D point clouds and filtering based on the values of 
arbitrary attributes is indeed possible. Newly arriving points only need 
31 ms until they are indexed and displayed.

Furthermore, we have extended the M3NO data structure and de-
veloped a new index for cases where attribute values are not uniformly 
distributed across the value range. The Bin List Index is a compact data 
structure that automatically adapts to the data being recorded (see 
Section 3.2.2). It helps reduce the number of false positives and the 
amount of data that needs to be loaded during querying.

1.3. Differences to the conference paper

This paper represents an extended version of our previous work with 
the title ‘‘Min-Max Modifiable Nested Octrees (M3NO): Indexing Point 
Clouds with Arbitrary Attributes in Real Time’’, which we presented at 
the CGVC 2024 [17]. Due to the new research aspects we were able to 
explore since the original publication, the paper underwent significant 
changes and contains the following edits and additional material:

• One of the key improvements is a new and efficient file for-
mat that enables not only high-performance storage and data 
retrieval but also data reduction through real-time compression 
(see Section 3.4). This also allows our system to now support 
any attribute, even those not defined in the LAS file format 
specification (see Section 3.3).

• We added a query language that allows users to define filtering crite-
ria in an intuitive way (see Section 5). This enables spatial queries 
based on bounding boxes and camera view frustum, LOD queries 
(level of detail), and includes filters for arbitrary attributes that 
can be combined with boolean operators.
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• Since our implementation has evolved quite significantly, we 
have performed a whole new evaluation that is much more detailed
than the one from our previous publication (see Section 7). We 
now apply our approach to various publicly available real-world 
datasets (a subset of AHN4, the Kitti dataset, and the Paris-Lille-
3D benchmark) and compare it to the state-of-the art software 
pgPointCloud and PotreeConverter 2.0.

• Since we now also focus on real-time visualization, we included
latency measurements in our evaluation (see Section 7.2.4) to 
assess how long it takes for a point to be displayed on screen after 
it was recorded and if interactivity can be achieved.

• Finally, in comparison to our previous paper, we have updated 
the section on related work to include recently published research 
(see Section 2). We have also added more details to the technical 
descriptions of our data structure (see Section 3).

1.4. Outline

The remainder of the paper is structured as follows. We first summa-
rize related work in the area of point cloud indexing and compare it to 
our approach (Section 2). We then present the M3NO data structure and 
give details on its components (Section 3). After this, we describe the 
indexing process (Section 4) and how querying works (Section 5). We 
present the software architecture for real-time visualization (Section 6) 
and evaluate our approach based on the research goals defined above 
(Section 7). The paper finishes with a conclusion and an outlook on 
future work (Section 8).

2. Related work

Research in the area of point cloud indexing can be divided into 
two sub-areas: data structures for spatial indexing (Section 2.1) and 
approaches that allow arbitrary point cloud attributes to be indexed 
or that combine spatial and attribute indexing (Section 2.2). In this 
section, we summarize existing approaches and discuss their suitability 
for real-time indexing.

2.1. Spatial indexing

A well-known data structure for spatial indexing is the 𝑘-d-tree [19]. 
Each node in such a tree represents a plane that subdivides a 𝑘-
dimensional space along one axis. For each tree level 𝑙 ∈ N≥0, a 
different axis 𝑖 ∈ [0, 𝑘) is selected, such that 𝑖 = 𝑙 mod 𝑘. If the 
position of the partition plane is chosen based on the distribution of the 
points in space, the tree becomes well-balanced. This requires all points 
to be known and sorted along the corresponding axis. Adding points 
later either results in an unevenly distributed tree or causes expensive 
rebalancing. This renders the 𝑘-d-tree unsuitable for real-time indexing 
where points might arrive at any time.

The same applies to the R-tree, a data structure similar to a one-
dimensional B-tree but supporting multiple dimensions [20]. In an 
R-tree, each node represents a bounding rectangle that encloses a 
group of points or other bounding rectangles. Since the number and 
area of the bounding rectangles depend on the points in the tree and 
inserting new points requires rebalancing, real-time indexing cannot be 
implemented efficiently.

An efficient data structure for R3 is the octree. It divides the space 
independently of the points to be indexed and centrally along all three 
axes into eight sub-spaces [21,22], which are then further divided 
recursively. The octree does not require rebalancing, but it still can 
be unbalanced if the data is unevenly distributed. Building an octree 
requires the bounding box of all points to be known in advance, which 
makes it unsuitable for real-time applications.

Another way to index a spatially distributed set of points in linear 
time is to use a space-filling curve such as a Z-order curve [23] or a 
Hilbert curve [24]. As the name implies, space-filling curves traverse 
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the entire n-dimensional space and assign an ascending index to each 
point (or cell) visited. This maps the n-dimensional space to one dimen-
sion, which in turn allows points to be inserted and queried through 
binary search in (𝑛 log 𝑛) time. Most space-filling curves preserve 
locality to a certain degree, so that points that are close to each 
other in space are also close to each other on the one-dimensional 
curve. They have been used for point cloud indexing [25], distributed 
processing [26], as well as to build continuous levels of detail [27]. 
Since curve indexes can typically be calculated in constant time and 
independently of each other, space-filling curves enable efficient and 
massively parallel point cloud indexing [28]. Interestingly, there is a 
close relation between Z-order curves and octrees. The curve index 
that should be assigned to a point 𝑃  in R3 corresponds to its Morton 
code, which can be computed by interleaving the bits of its x, y, and z 
values. This is equivalent to traversing an octree, where in each level, 
all axes are divided centrally, resulting in 23 = 8 subspaces. Using a 
fast algorithm to sort the points after assigning indexes to them, such 
as Radix sort, it is therefore possible to build a compact representation 
of an octree as a linear array in (𝑛 + 𝑛𝑤) time, where 𝑤 is constant 
and equals the desired word length of the Morton code.

The Modifiable Nested Octree (MNO) is a special type of octree, 
where each node can contain a set of points stored in a regular 
three-dimensional grid [29]. This allows the space to be divided both 
spatially and into levels of detail. The points in the root node corre-
spond to the lowest level of detail (LOD 0), and each lower level in the 
tree corresponds to a higher level of detail. The authors also present 
a way to add points outside the bounding box by creating new parent 
nodes of the current root node until the points are contained. For our 
real-time indexing, we want to incrementally build the level of detail 
structure in a top-down manner, which does not work when creating 
new root nodes.

The SimLOD approach, developed by Schütz et al., enables GPU 
accelerated indexing of points in a data structure similar to MNOs [30]. 
As an incremental construction, it allows visualization during the in-
dexing process and achieves a speed of 580 million points per second. 
However, true real-time indexing during LiDAR scans is not possible 
with this approach, because the bounding box of the data must be 
known in advance.

A solution to this problem was presented by Kocon [28] and later 
adapted for MNOs by us [16]: In a large regular grid, an arbitrary 
number of MNO trees are created. As soon as points fall into a new 
cell of the grid, a new MNO tree is created in that cell. The approach 
presented in this paper is based on this idea. We describe it in detail in 
Section 3.

2.2. Attribute indexing

A straightforward way to index a point cloud by attribute is to store 
it in a database and reuse the existing indexing capabilities. Dobos 
et al. for example, describe a concept for a database model, in which 
each row represents a single point [31]. The coordinates and attributes 
are all stored in different columns. A primary database index is then 
created on the coordinates and further indexes can be created on the 
attributes. Although the work of Dobos et al. is promising, it remains 
just a concept. They do not present an actual implementation.

Storing individual points as records in a database is not efficient 
given the enormous number of points and the large number of at-
tributes. The PostgreSQL extension pgPointCloud provides a solution by 
grouping nearby points into patches [32]. Each patch stores the mini-
mum, maximum, and average value for each coordinate and attribute. 
As Bormann et al. have shown, the performance of pgPointcloud in 
terms of indexing and querying is not competitive and in many cases 
even slower than working directly on the raw data [33], which makes 
it unsuitable for real-time indexing. Nevertheless, grouping points into 
chunks instead of saving each of them individually is a useful method 
to keep the size of the index small and to simplify compression [34].
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Another way of indexing attributes is to use space-filling curves. 
Similar to spatial indexing (Section 2.1), they can map the multi-
dimensional attribute space to one dimension. For example, HistSFC 
presented by Liu et al. [27] supports indexing of both spatial coordi-
nates and attributes. However, Liu et al. discovered that space-filling 
curves do not scale well when applied to an arbitrary number of 
attributes. In their paper, they show that in tests on the AHN2 dataset, 
indexing with four dimensions already results in queries with a false 
positive rate of up to 164%, which increases rapidly with additional 
dimensions. To deal with this problem, some approaches automatically 
rank which attributes in a point cloud are most important to index and 
should, therefore, be included in the index structure [35]. Since our 
aim in this paper is to index arbitrary attributes (and not just a limited 
number), space-filling curves are not an option for attribute indexing.

Ladra et al. present a novel approach to represent point clouds as 
a so-called compact data structure [36]. Such a data structure can 
be completely kept in memory and obtains very fast query times, 
even though it is compressed. The approach is even able to index 
attributes. However, since everything must be kept in memory, it does 
not support arbitrarily large datasets. The biggest dataset we used for 
our evaluation was 365 GB in total (see Section 7.1), which does not 
fit into main memory, even compressed. Also, Ladra et al. do not focus 
on real-time indexing or visualization. Their approach is not optimized 
for fast point insertion and does not provide levels of detail, which are 
required to visualize large point clouds.

Nevertheless, an interesting aspect of the approach by Ladra et al. 
is the attribute index structure. They extend the Binned Min–Max 
Quadtree introduced by Zhang and You [37] and apply it to LiDAR 
point clouds. The points are sorted into an octree, and for each subtree, 
they are sorted by attribute. Since the algorithm has access to the 
whole dataset, the minimum and maximum values of all attribute 
values within each subtree are known. This allows entire subtrees to 
be skipped during querying if the value ranges do not match the query 
condition. The basic idea of combining a spatial index (i.e. an octree) 
with an attribute index and storing attribute value ranges for subtrees 
fits well with our goals and provides a basis for the data structure 
presented in this paper.

3. The M3NO data structure

The main building block of our approach is a data structure called 
the Min–Max Modifiable Nested Octree (M3NO). It works in real time and 
supports both spatial indexing and indexing of arbitrary attributes. For 
this, it contains two different components that we describe in detail in 
the following (Sections 3.1 and 3.2). We also explain how points are 
represented in memory (Section 3.3) and on disk (Section 3.4).

3.1. Spatial data structure

The spatial data structure is based on the results of our previous 
work [16]. It consists of an arbitrary number of Modifiable Nested 
Octrees (MNO) [38] in a regular grid with a fixed cell size. In a real-
time scenario, the total size of the point cloud is not known in advance, 
as new points are recorded continuously. Due to this, the indexing 
algorithm creates new root nodes each time points arrive in grid cells 
where no MNO tree has been created yet. This allows the data structure 
to dynamically grow as required.

Each MNO consists of octree nodes, which recursively divide the 
space into eight subspaces. This halves the size of the nodes along each 
axis with every additional level in the tree. All nodes contain a regular 
grid with a default of 2563 cells to store the points. A maximum of one 
point can be stored in each cell. Note that, in most areas, the points 
lie on two-dimensional manifolds (the surfaces visible to the LiDAR 
scanner) and the regular grids are only sparsely filled.

By halving the node size at each level along all axes, the distances 
between the regular grid cells are also halved. This results in higher 
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Fig. 2. Modifiable Nested Octree from our previous work [16]: In the upper region, 
three root nodes are generated, corresponding to the lowest level of detail (LOD). In 
the higher LODs, many smaller nodes contain more points in total and thus provide a 
higher level of detail. For illustration purposes, each node in the figure has a grid of 
4 × 4 cells in which the points are stored.

densities of points deeper in the tree, and thus a higher level of detail. 
Fig.  2 illustrates this for a two-dimensional point cloud.

The data structure saves all nodes with the corresponding points 
as individual files. When nodes need to be read or modified, they 
are loaded into a cache with a definable maximum capacity. If it is 
exceeded, the least recently used nodes are written back to disk. Using 
this out-of-core approach allows point clouds exceeding the size of main 
memory to be indexed.

3.2. Attribute data structure

Our approach allows points to be filtered based on the values of 
attributes. For this, users can define queries. Range queries such as
attr(intensity > 35) or equality queries such as attr(classification == 3)
are supported (see our query language in Section 5). The query result 
will then only contain the subset of the point cloud where the attributes 
match the filter conditions.

In order to accelerate the attribute based filtering of the point cloud, 
we have built a secondary index structure that is integrated with the 
spatial index. It is based on the idea by Ladra et al. [36] but is adapted 
for real-time capability. For every node of the spatial data structure, 
our index stores information about the distribution of attribute values 
in its subtree, which can be used during querying to determine if 
a subtree can be skipped. We implemented two representations of 
this distribution, the Value Range Index and the Bin List Index (see 
Sections 3.2.1 and 3.2.2).

Attributes are indexed completely independently of each other. The 
users can configure any number of attribute indexes. Each index is 
managing a single attribute.

Due to the small size of the information stored in the attribute 
indexes, they can completely operate in memory. They only need to 
be loaded from or stored to disk upon startup and shutdown.

3.2.1. Value range index
For each node, we store the minimum and maximum attribute value 

for all points in its subtree. Attributes with vector data types such as
color use the component-wise minimum and maximum. The attribute 
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Fig. 3. Example of attribute index structure while filtering for intensities in the range [230; 255]. Orange nodes are discarded by the attribute index structure, blue nodes are 
loaded.
Fig. 4. Distribution of attribute values in a node.
value range is updated during indexing, whenever new points are added 
to the node.

An example of this attribute index structure for the intensity at-
tribute can be seen in Fig.  3. For legibility, this example uses a two-
dimensional quadtree instead of a three-dimensional octree. For each 
node, the index stores the value ranges of the intensity attribute values 
of the points in the underlying subtree (including the node itself).

In the example, the point cloud is filtered for intensity values in the 
range [230; 255]. The attribute index can accelerate range queries like 
this by eliminating entire subtrees, which in turn do not need to be 
loaded from disk. In the example, node LOD1-1 has a value range that 
does not overlap with the query range. Therefore, it does not contain 
a matching point and its entire subtree can be skipped. In contrast, 
node LOD1-3 has a value range, that overlaps with the query range. 
Here, it is necessary to load the node from disk and to sequentially 
filter all contained points. The attribute index also helps detect nodes 
where no sequential filtering needs to be performed, which further 
improves query speeds. The value range of node LOD1-2 is completely 
contained in the query range. This tells us that all contained points must 
be matching. The node needs to be loaded from disk, but filtering out 
non-matching points is not necessary.

3.2.2. Bin list index
The value range index works well for continuous numerical at-

tributes such as intensity. However, some attributes are of a categorical 
nature. An example would be the classification attribute. In this case, 
the minimum and maximum are meaningless, as they do not imply that 
every value in between is actually used. The example shown in Fig.  4 
(left) would lead to an attribute range of 2 to 9. However, there are 
several classification values between 2 and 9 that are not present in the 
node. If the user queried for Building (class 6), this would lead to a false 
positive, as there are no points classified as Building even though it is 
within the attribute value range.
5 
There are similar cases for some continuous point attributes. The 
example in Fig.  4 (right) shows a possible distribution of the GPS Time
attribute, when the sensor moves through the area of the node twice. 
Here, the attribute range is 100 to 800. If the user queried for anything 
between 300 and 500, this would lead to a false positive node, because 
there are no points within this value range despite being within the 
total value range.

Ladra et al. [36] solve this problem by calculating a histogram of 
the attribute value distribution. During querying, they can check the 
histogram bins that correspond to the query range. If these bins are 
empty, the node does not need to be loaded. Calculating histograms 
and defining their ranges does, however, require knowing the minimum 
and maximum of the attribute values beforehand. Since we are indexing 
points already during capturing, we do not know the final attribute 
value bounds.

Instead of histograms, we only store a set of non-empty bins. During 
indexing, we adapt the bin width so that the number of non-empty bins 
stays below a threshold 𝑘.

An empty node starts with the minimal bin size. Whenever points 
are added to the node, they are checked against the existing bins and 
any new bin is added to the bin list. When the number of bins reaches 
the threshold 𝑘, the bin size is doubled. Doubling the bin size means 
that neighboring bins are merged, which in turn reduces the number of 
bins again. Note, that this can be done without checking every point, 
because we know which of the old bins falls into which doubled bin.

Fig.  5 shows an example of this approach. Here, the number of bins 
should stay below 𝑘 = 6. We want to add the values 10, 11, 42, 43, 
23, 22, 20, 45, 46, 16, 18, 12, 19, 15 to the node in this order. At the 
beginning, the bin size is 1. We can add the first five values 10, 11, 42, 
43, and 23 without exceeding 𝑘 (first row). The next value 22 would add 
a sixth bin to the list and therefore exceed the threshold 𝑘, so the bin 
size is doubled before adding more values. This merges the bins 10..10
and 11..11 as well as 42..42 and 43..43, thereby reducing the number 
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Fig. 5. Example of how the bin list index of a single node is constructed incrementally.
of bins again. We can now add the values 22, 20, and 45 (second row) 
without exceeding 𝑘. Note, that not all values necessarily add a new 
bin to the list. For example, value 22 fell into the existing bin 22..23, 
keeping the bin list unchanged. After doubling the bin size once again, 
we can add the values 46, 16, and 18 (third row). After that, the bin 
size is doubled one final time, and we add the remaining values 12, 19, 
and 15. This leaves us with the final bin list in row 4.

For attributes with floating point values, the bins are not regularly 
sized. Instead, they reflect the floating point accuracy, so that in the 
minimal bin size, each bin contains exactly one floating point value. For 
attributes with vector data types, the bins are calculated component-
wise, so that each bin essentially becomes a bounding box inside the 
attribute vector space.

During querying, we check each bin against the queried value range. 
If we queried the value range [30; 35] in the example above, we could 
skip the node subtree, because the query range does not overlap with 
any of the three bins.

3.3. Representation of point data in memory

We use the open source library pasture [39] for the in-memory 
representation of the point data. The library comes with data structures 
for storing point data with arbitrary attributes, either in an array-of-
structures (AoS) or structure-of-arrays (SoA) layout. While an SoA can 
be beneficial for cache efficiency when only accessing single attributes, 
we opted for the AoS layout. It massively simplifies operations that 
work on full points including all attributes, such as copying points from 
an input buffer into a node, as required during the LOD sampling. 
This layout stores points in a single byte buffer, where each point is 
the concatenation of its position and attributes. An additional piece of 
metadata, the point layout, is used to look up the offset of each attribute 
within the points, so individual attributes of a specific point can be 
accessed by reading or writing at the memory location base_address +
point_index × point_size + attribute_offset.

3.4. Representation of point data on disk

Our out-of-core data structure swaps nodes to disk once they are 
evicted from the least recently used cache. For representing point data 
on disk, we have developed a custom file format. It allows for storing 
point clouds with arbitrary attributes, is straight-forward to read or 
write, and comes with support for compression.

In the implementation presented in our previous paper [17], we 
relied on the LAS [11] file format, which is widely used for LiDAR point 
clouds. It can store common point attributes such as intensity, return 
number, or classification. Which attributes are used as well as their byte 
positions are determined by selecting one of eleven predefined point 
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data record formats. With LAZ [40], there is also a compressed variant 
based on a specialized compression algorithm. It can achieve very good 
compression ratios of 5:1 or better.

Due to the inflexibility of the predefined point data record formats, 
LAS cannot be used for storing point clouds with arbitrary attributes. 
While it is possible to add extra attributes, the predefined ones cannot 
be altered. Setting unused attributes to zero would waste disk space and 
negatively impact the indexing performance because of the additional 
I/O overhead. Also, while compressed storage is desirable, the LAZ 
compression algorithm is too computationally expensive to be used 
during real-time indexing.

To overcome these drawbacks, we have developed a custom data 
format for encoding point data. Files consist of a header followed by 
the actual point data. The header contains the following information:

Magic number The magic number acts as an identifier for our file 
format.

Version number A version number allows for future backwards com-
patible changes to the file format.

Endianness The endianness of the point attributes. Point attributes are 
always stored in the native endianness of the platform the file 
is created on.

Compression Determines if the point data is compressed or not.

Number of points The size of the point cloud.

Point layout The list of point attributes. Each attribute is identified by 
a name and has a type. In addition to the type, the size of the 
attribute values in bytes is stored. This is needed for attribute 
types such as ByteArray, which do not have a statically known 
size.

The encoding of the point data depends on whether compression 
is enabled or not. Without compression, each point is stored as the 
concatenation of its attributes without any padding and in the order 
defined by the point layout in the header. This is identical to our 
in-memory representation. Therefore, encoding and decoding uncom-
pressed point data is trivial to implement and very efficient.

For compression, we are using the LZ4 compression algorithm [41]. 
LZ4 is fast enough to run in real time while still achieving reasonable 
compression ratios. Before compression, the point data is transposed, 
as shown in Fig.  6. There are multiple compression contexts, where 
compression context 𝑖 is responsible for the 𝑖’th byte of each point. 
This is beneficial for the compression rate, because it is very likely that 
similar data is stored together. This is very similar to the LAZER format 
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Fig. 6. Transposing point data for compression.
Fig. 7. Comparison of different compression algorithms.

proposed by Bormann et al. [42,43], although they are transposing the 
point data on a per-attribute basis, while we work on a per-byte basis. 
This has a positive impact on the compression rate as leading zeros, 
for example, end up one after the other and can be compressed quite 
efficiently.

The choice of LZ4 as a compression algorithm is based on tests 
that we have conducted, whose results can be seen in Fig.  7. We 
compressed a point cloud with LZ4, Snappy, Zstandard and Brotli, 
each as-is and with the data transposition described above. We have 
also given the size and timing for LAS and LAZ for reference. The 
result was, as long as the point data is transposed, all 4 compression 
algorithms perform similarly well, both in terms of compression ratio 
and read/write time. Since there is no clear winner, we chose LZ4 for 
our final implementation.

4. Indexing process

The indexer receives incoming points in real time to insert them 
into the data structure. For this, each node has an additional in-memory 
point buffer that collects points for the associated subtree. This is called 
the inbox of a node. For each incoming point, the indexer looks for an 
MNO tree in the regular grid of MNO trees. If there is one, it places the 
point in the inbox of the root node of that tree. If no tree exists at that 
location, a new one is created.

Multiple worker threads are responsible for inserting the points from 
the inboxes into the nodes in parallel. Each thread repeatedly performs 
the following steps:

1. A node with a non-empty inbox is chosen for processing. A 
priority is assigned to every node, of which the one with the 
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highest priority is selected. In previous work, we have compared 
different ways of calculating the priority [16]. Here, we exclu-
sively use the NrPointsTaskAge priority function that is shown in 
the following equation.
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑁𝑟𝑃𝑜𝑖𝑛𝑡𝑠 ⋅ 2𝑇 𝑎𝑠𝑘𝐴𝑔𝑒

The variable NrPoints refers to the size of the inbox and TaskAge
refers to the time for which the inbox has been non-empty.

2. The attribute indexes are updated with all points in the inbox. 
For each indexed attribute, the value range or bin list of the 
points in the inbox is calculated. This intermediate result is then 
merged into the existing value range or bin list of the node in 
the attribute index. We are using a mutex to synchronize access 
to each attribute index. Only the merge operation is in its critical 
path. It is very fast and does not depend on the number of points 
in the inbox, leading to low mutex contention.

3. The points in the node are either loaded from the cache, or from 
the corresponding file on disk. If it does not exist yet, a new one 
is created.

4. All points are removed from the inbox and inserted into the 
node. This is done using a grid center sampling approach [14,
29]. Among all points that fall into the same cell of the point 
grid of the node, the one that is closest to the center of the cell 
is accepted into the node. All remaining points are added to the 
inbox of the corresponding child node.

5. The updated node is stored in the cache. If the maximum cache 
size is reached, the least recently used node is evicted and stored 
to disk.

6. If there are any running real-time queries, they are notified of 
the changed node, so that they can update their query result 
accordingly.

5. Querying

Our implementation allows for flexible querying of the indexed 
point cloud based on spatial criteria, attribute values, or LOD, which 
combines all aspects of our index structure. We have developed a query 
language that allows users to define queries in an intuitive way.

Spatial queries filter the point cloud based on axis-aligned bounding 
boxes or a camera view-frustum. Bounding boxes are defined using 
their respective minimum and maximum coordinate values:

aabb ( [ x1 , y1 , z1 ] , [x2 , y2 , z2 ] )

View-frustum queries are defined by a set of camera parameters. 
The query result will only contain points that are visible within the 
view frustum of this camera. Furthermore, the view-frustum query also 
performs an LOD selection, so that the projected point spacing is not 
larger than max_distance pixels apart. This leads to parts that are closer 
to the camera having a finer LOD and the LOD level becoming coarser 
further away from the camera.
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view_frustum (
camera_pos : [x1 , y1 , z1 ] ,
camera_dir : [x2 , y2 , z2 ] ,
camera_up : [x3 , y3 , z3 ] ,
fov_y : f4 ,
z _near : f5 ,
z _ f a r : f6 ,
window_size : [x7 , y7] ,
max_distance : f8

)

The level of detail of the query result can be limited. This will only 
load nodes in the first 𝑛 levels of the octree structure.

lod (n )

The point cloud can be filtered based on attribute values. Range and 
equality checks are supported.

at t r ( C l a s s i f i c a t i o n == c )
at t r ( C l a s s i f i c a t i o n != c )
at t r ( I n t e n s i t y < i )
at t r ( I n t e n s i t y > i )
at t r ( I n t e n s i t y <= i )
at t r ( I n t e n s i t y >= i )
at t r ( i1 < I n t e n s i t y < i2 )
at t r ( i1 < I n t e n s i t y <= i2 )
at t r ( i1 <= In t en s i t y < i2 )
at t r ( i1 <= In t en s i t y <= i2 )

Subqueries can be combined with the boolean operators and, or, and 
the unary ! operator for negation. This allows users to build complex 
custom queries out of simple building blocks. The following example 
query selects any point in LOD 3 or smaller that has a classification 
value other than 5 and that is within one of the two given bounding 
boxes:

lod (3)
and ! at t r ( C l a s s i f i c a t i o n == 5)
and (
aabb ([10 , 15 , 0] , [20 , 45 , 60])
or aabb ([20 , 30 , 0] , [30 , 40 , 60])

)

Querying can either be performed on a fully indexed point cloud or 
while the point cloud is still being captured. One-off queries run once 
and then return the filtered query result. Real-time queries, on the other 
hand, can be executed during the capturing process. After returning the 
initial query result, the results of real-time queries will be kept up to 
date as more points are added to the index. In Section 6, we present 
a 3D-Viewer that makes use of this by translating its camera position 
into a real-time view frustum query.

To execute the query, the algorithm traverses the MNO tree. Each 
node is checked against the query. This can have one of three outcomes:

Negative No point in the current subtree matches the query. Spatial 
queries evaluate to negative if the bounding box of the subtree 
node is completely out of the query region. Attribute queries 
evaluate to negative if there is no overlap between the distribu-
tion of attribute values within the subtree and the queried value 
range.

Partial If no universal statement can be made about all points in the 
node, it is marked as partial. If the bounding box of a node 
overlaps with the query region of a spatial query but is not 
completely contained in it, then some points in the node will 
be positive and some will be negative, making the complete 
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node only partially positive. Similarly, if it is known from the 
distribution of attribute values in the node that there will be 
both points inside and outside the queried attribute range, the 
node is partial.

Positive A node is marked as positive if it is known that all points in 
the node will match the query. For spatial queries this is the case 
if its bounding box is completely within the query area. Attribute 
queries evaluate to positive if the attribute values are completely 
contained in the queried value ranges.

The query is evaluated recursively along its parse tree. This means 
that spatial and attribute subqueries are evaluated first. The results of 
the subqueries are then combined according to the truth tables given 
in Fig.  8.

If the final outcome for the entire query is Negative, then the node 
is not loaded from disk and its subtree can be skipped from further 
traversal. Nodes marked as either Partial or Positive need to be loaded 
from disk or cache. While positive nodes can be added to the query 
result as they are, partial nodes require sequential point filtering:

For each subquery, a bitmap is calculated that contains, for every 
point, if that point matches the subquery. The bitmaps are combined 
according to the boolean operations used in the query. The final bitmap 
is used to filter the points in the node.

After the complete tree has been traversed, one-off queries can 
terminate. If the query is a real-time query, it keeps running. It receives 
a stream of IDs of nodes that have changed from the indexer. Each 
changed node is tested against the query again. If the outcome is
Negative, the change is ignored. Otherwise, the query result is updated 
with the new contents of the node, possibly after another sequential 
filtering step (in case the outcome was Partial).

6. Real-time visualization architecture

We implemented the data structure in our open-source software 
package Lidarserv, which is available on GitHub [18]. In this section, 
we present its architecture (see Fig.  9). A central server is responsible 
for processing incoming points and queries. Clients can then send new 
points to the server or submit queries on the existing point cloud via 
network. This architecture is similar to the concept of the point cloud 
server presented by Cura et al. [34].

The central indexing server stores the indexed point cloud and 
processes incoming points and client queries. When new clients connect 
to the server, it transmits a set of data:

• The point cloud coordinate system
• The list of defined attributes
• The compression state
• The current bounding box of the indexed point cloud

Clients can then answer what type of client they are:

CaptureDevice: This type of client sends points to the server for 
indexing.

Viewer: This client can send queries to the server to get all points that 
match the query.

The architecture provides a high degree of flexibility, which makes 
it possible to cover a wide range of use cases. Depending on the appli-
cation, clients and server can run on the same device, or a viewer client 
can be installed on a tablet with limited computing power (e.g. tablets). 
Clients can be implemented in any programming language. They just 
need to follow the Lidarserv network protocol. This allows for connect-
ing any type of scanner without modifications to the server. We have 
already implemented a number of clients for common applications that 
are described in the following.
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Fig. 8. Truth tables for the boolean operators on the node query outcomes. The abbreviations Neg, Par and Pos refer to Negative, Partial and Positive node query outcomes, 
respectively.
Fig. 9. Lidarserv architecture: The server processes incoming points and queries. Clients can send new points or queries via network.
The scanner input client is needed for the typical application of 
Lidarserv. This CaptureDevice client sends all the points in real time 
to the indexing server, using the binary point data representation 
described in Section 3.4. Further preprocessing steps, e.g. for real-time 
colorization or classification, can also be implemented here.

For testing purposes, the file input client is able to read LAS files. 
The data is then sorted by GPS time and transmitted to the server at 
the original speed (or faster). This client makes it possible to use our in-
dexing approach to perform conventional batch indexing. Incremental 
indexing of multiple files is also possible.

The viewer client displays the existing point cloud in real time. The 
selected camera position determines which view-frustum queries are 
sent to the server. The server then processes these real-time queries 
using the index and sends the corresponding points back to the viewer. 
Furthermore, additional spatial and attribute filters can be defined and 
combined with the view-frustum queries. The queries can be configured 
to send entire octree nodes containing the searched points, or to filter 
the nodes point-wise on the server. When sending compressed octree 
node files, the query time can be reduced. When filtering points on 
the server, the data which has to be transferred over the network 
and stored in the RAM of the viewer clients can be minimized. A 
screenshot from the viewer client can be seen in Fig.  10. A video of 
the visualization during the indexing process was submitted together 
with the manuscript as supplementary material.

For testing and export purposes, there is also an output file client that 
sends queries and filter requests defined via CLI to the server and stores 
the results in a LAS file.

7. Evaluation

To evaluate our approach, we implemented the M3NO data struc-
ture in Lidarserv and measured various properties using multiple ex-
emplary test datasets. Some measurements were also carried out with 
pgPointCloud and PotreeConverter 2.0 for comparison. The test en-
vironment and dataset are described in Section 7.1. The results are 
presented in Section 7.2.
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7.1. Test setup

The software package includes an evaluation program that indexes 
a point cloud as fast as possible to determine the maximum indexing 
speed. It also measures various metrics ranging from querying times to 
latency. All measurements were executed on a virtual Linux machine 
with a Xeon Gold 6140 processor, 32GB of RAM, and SSD storage with 
a write speed of 330MB/s and a read speed of 340MB/s.

We used three different publicly available datasets for the evalu-
ation (see screenshots in Fig.  11). The subset of AHN4 is our largest 
test dataset with almost 11.5 billion points (365GB). AHN4 covers the 
whole Netherlands and was acquired using state-of-the-art airborne 
laser scanning technology [12]. Our subset contains consecutive flight 
paths with continuous time to simulate real-time acquisition. It was 
acquired at an average rate of 1.22 million points per second (Mpts/s). 
The KITTI dataset from the KIT in Karlsruhe, Germany is a car-based 
scanning dataset with 805 million points (33GB) [44]. The points do 
not have a GPS timestamp, so the recording speed cannot be specified. 
The points are ordered by their point source ID. In this case, this is 
the order in which they were recorded. The Paris-Lille-3D dataset is a 
French car-based mapping dataset with continuous time [45]. We only 
used the data from the city of Lille, which was recorded at a rate of 
about 0.41Mpts/s. It contains 120 million points (3.36GB). We have 
sorted the points of each dataset by GPS time so that we can later index 
them in their actual recording order to better reflect real-time indexing.

All attributes we filtered on were indexed using a Value Range 
Index (see Section 3.2.1). In addition, we used a Bin List Index (see 
Section 3.2.2) for the Classification and Color attributes. For each 
dataset, we configured the root node size of the index structure so that 
the nodes at the lowest level of detail cover most of the dataset to 
ensure smooth visualization even when viewing the entire point cloud. 
We then chose the number of levels of detail so that at the highest 
level of resolution, point grid cells are no more than one centimeter 
apart. We limited the least recently used cache size to 500 octree nodes 
for KITTI and Lille, and 10 000 nodes for AHN4. This way, we avoided 
having the majority of each dataset in RAM, which would have been 
advantageous for smaller datasets. This makes it easier to compare 
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Fig. 10. Screenshots of the viewer client while indexing the KITTI dataset.
Fig. 11. Screenshots of the datasets used for evaluation.
the readings from the small datasets with larger datasets. We used 32
indexing threads for each dataset. For the pgPointCloud measurements, 
we chose a PDAL pipeline [46] and a PDAL chipper with a capacity of 
400 to divide the points into patches for the insertion process [46].

7.2. Results

We took measurements for each of the four goals of the paper. 
The goal of real-time capability (G1) was checked by measuring the 
maximum possible indexing speed (see Section 7.2.1). The data reduc-
tion goal (G2) was measured by running several sample queries and 
recording the number of nodes and points returned (Section 7.2.2). The 
time reduction goal (G3) was evaluated by measuring the execution 
time of sample queries (Section 7.2.3). The real-time visualization goal 
(G4) was checked by measuring the latency of individual points from 
insertion to visualization (Section 7.2.4).

7.2.1. Real-time indexing
In order to reach the goal of real-time indexing, our data structure 

had to be capable of processing more points per second than received 
from the LiDAR sensor. To measure the maximum possible indexing 
speed of Lidarserv, we monitored the inboxes of all nodes and made 
sure that a constant load of new points was maintained. These measure-
ments were performed with both compression enabled and disabled. 
For Lidarserv, we used LZ4 compression as described in Section 3.4. 
PotreeConverer 2.0 uses Brotli and pgPointCloud its own dimensional 
compression. The measured indexing speeds are listed in Fig.  12.

The measurements show that our approach can easily outper-
form the point rates of state-of-the-art airborne and car-based LiDAR 
scanners. The AHN4 dataset, which was acquired at an average of 
1.22Mpts/s, was indexed with 2.29Mpts/s. On the Lille dataset, we 
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even achieved an indexing speed of 5.24Mpts/s which was 13 times 
faster than its acquisition speed. With these results, our indexing is 
significantly faster than the acquisition speeds, fulfilling the goal of 
real-time indexing (G1). The uncompressed test runs of AHN4 and Lille 
were faster than the compressed runs due to the additional computation 
required for compression. It is noteworthy that the overhead caused by 
attribute indexing on top of the spatial index is quite small.

The PotreeConverter measurements were 20% to 211% faster com-
pared to Lidarserv. This is because PotreeConverter does not perform 
real-time or incremental indexing and therefore has more optimization 
options, such as splitting the cloud into equal sized chunks of points. 
This is impossible to do in real time. pgPointCloud on the other hand 
achieved only about 3–5% of the speed of Lidarserv. It also crashed 
when inserting larger point clouds due to excessive memory usage, 
which is why it is not included in the charts for AHN4 and KITTI.

7.2.2. Query data reduction
The second goal addresses the quality of the index in its ability to 

reduce the amount of data that has to be loaded. This is measured 
in the number of nodes and points that cannot be eliminated by the 
index despite not matching the query. For this, we defined a set of 
sample queries (see Fig.  13). Tables  1, 2, and 3 list all queries and the 
percentage of points returned for each dataset. We focus on attribute 
queries in order to better show the effect of the spatial distribution of 
the attribute values on the data reduction.

Fig.  14 provides an overview of how many points are searched for 
each query and how many were returned. This allows the efficiency 
of the attribute index structures to be assessed. Fewer points returned 
by both range filters indicate a higher efficiency and a faster query. 
The various queries have very different selectivities, which is why the 
results also differ between the queries.
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Fig. 12. Insertion speed comparison: Lidarserv is able to exceed the scanner speed, enabling real-time indexing. PotreeConverter is faster than Lidarserv, but does not allow 
incremental indexing. pgPointCloud ran out of memory on the larger datasets and is significantly slower than Lidarserv on the Lille dataset.
Table 1
Sample queries with the percentage and absolute number of points returned (AHN4 
dataset).
 Query Percentage Points

 Classification Bridges
attr(Classification == 26)

0.12% 13556318
 
 Classification Buildings
attr(Classification == 6)

4.29% 493893685
 
 Classification Ground
attr(Classification == 2)

77.87% 8974515216
 
 Classification Vegetation
attr(Classification == 1)

10.34% 1191705807
 
 Intensity High
attr( Intensity > 1400)

48.99% 5646198411
 
 Intensity Low
attr( Intensity <= 20)

0.00% 182
 
 Time Big Slice
attr(GpsTime < 270521185)

100.00% 11524770195
 
 Time Small Slice
attr(270204590 < GpsTime < 270204900)

0.00% 984
 
 Time Medium Slice
attr(269521185 < GpsTime < 269522000)

4.36% 502720135
 

Table 2
Sample queries with the percentage and absolute number of points returned (KITTI 
dataset).
 Query Percentage Points

 Classification Buildings
attr(semantic == 11)

12.14% 97802750
 
 Classification Ground
attr(semantic <= 12)

54.35% 437793886
 
 Pointsource1
attr(35 <= PointSourceID <= 64)

11.43% 92079676
 
 Pointsource2
attr(208 <= PointSourceID <= 248)

15.18% 122307911
 
 RGB
attr(ColorRGB <= [10,10,10])

0.02% 139878
 
 Time Big Slice
attr(199083995 <= GpsTime <= 466372692)

33.18% 267288697
 
 Time Medium Slice
attr(687577131 <= GpsTime <= 805552832)

14.65% 117975739
 

Lidarserv allows a large number of points to be removed before 
sequential filtering. A greater range of points can be filtered out when 
filtering for attributes, where points spatially close to each other have 
similar values (e.g. time or classification).

Fig.  15 compares the percentage of nodes/patches returned from 
the attribute index. This shows that proportionally many more nodes 
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are filtered out than points. This is because the search criteria do not 
apply to a large range of small nodes, while large nodes often contain 
the points being searched for.

Node reduction significantly reduces the number of disk accesses of 
the query, even if point reduction is not optimal. This is especially true 
for cases where the index eliminates many nodes with only a few points. 
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Table 3
Sample queries with the percentage and absolute number of points returned (Lille 
dataset).
 Query Percentage Points

 Intensity High
attr( Intensity > 128)

0.11% 131345
 
 Intensity Low
attr( Intensity <= 2)

5.59% 6702129
 
 Time Big Slice
attr(GpsTime < 20000)

96.56% 115872130
 
 Time Small Slice
attr(GpsTime > 23000)

3.44% 4127870
 
 PointsourceID >= 10
attr(PointSourceID >= 10)

2.84% 3404478
 
 PointSourceID >= 5
attr(PointSourceID >= 5)

14.51% 17414734
 
 ScanAngleRank <= 45
attr(ScanAngleRank <= 45)

1.93% 2321714
 
 ScanAngleRank <= 90
attr(ScanAngleRank <= 90)

13.03% 15638173
 
 View Frustum
view_frustum(
 camera_pos: [−560.45, −584.87, 47.29],
 camera_dir: [0.75, 0.65, −0.12],
 camera_up: [0.0, 0.0, 1.0],
 fov_y: 0.78,
 z_near: 3.9,
 z_far : 3994169.6,
 window_size: [500.0, 500.0],
 max_distance: 10
)

0.04% 51959
 
 
 
 
 
 
 
 
 
  
Fig. 13. Sample queries: the searched points are displayed in green. The false positive points returned from Lidarserv are marked in yellow. It can be observed that only the high 
resolution LODs are loaded around the searched points. As the distance to the searched area increases, only the larger, lower resolution nodes are loaded.
12 
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Fig. 14. Query comparison by number of points.
The results show that the attribute index is very effective in reducing 
the number of nodes to be loaded, which is why we consider the goal 
of data reduction to be achieved (G2).

7.2.3. Query time reduction
The index structure should decrease query execution times for 

end users or connected applications, enabling interactivity and short 
waiting times. In Fig.  16, we compared the Lidarserv query times of 
the sample queries.

Lidarserv demonstrated high querying speeds of 1.34Mpts/s with 
compression enabled and 1.74Mpts/s without. Compression had an 
impact on the querying speed, but can still be beneficial in a networked 
environment due to the reduced amount of data to be transferred. In 
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Fig.  17, we compare the sizes of the indexed point clouds to evaluate 
the efficiency of the compression. Lidarserv achieves a compression 
rate of about 63% with the given data sets, while PotreeConverter 
2.0 achieves 81%. For comparison, the LAZ Compression achieves 
approximately the same compression rate as the Brotli Compression of 
PotreeConverter 2.0.

The results demonstrate, that in all test queries, the attribute index 
significantly reduces query time in comparison to sequential point 
filtering. Especially for the attributes and queries that provide a high 
data reduction as shown in the previous section, the query time can be 
reduced by using the attribute index. In the worst case, the query takes 
as long as sequential filtering, because the overhead of checking the 
attribute index per node is very small. In the best case, we can achieve 
query times in the range of milliseconds even on massive datasets, 
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Fig. 15. Query comparison by number of nodes.
e.g. with the small time slice query on the AHN4 dataset (0.03 s). With 
these results, we meet the goal of reducing query time (G3).

7.2.4. Real-time visualization
To achieve the goal of real-time visualization, points must arrive 

at the visualizer with a low delay after being captured. For this, we 
measured the time it took the points to be rendered on screen in a 
real-time query. We replayed the Lille dataset with constant 1Mpts/s 
multiple times. Simultaneously, we ran different real-time queries and 
measured the time it took to return newly inserted points. Fig.  18 shows 
the distribution of the latencies per query.

Queries with a large number of returned points have a higher 
latency than those with few points. This is due to the fact that more 
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nodes need to be updated and transferred. In terms of visualization, 
the frustum query on the right-hand side of the diagram is particularly 
important. Here, half of the points are visible after only 4.2 ms, and 
the entire area is visible after 31 ms. To evaluate the latencies, there 
are a number of different latency guidelines for real-time applications, 
such as those summarized by Attig et al. [47]. To verify the real-time 
visualization goal, the threshold of 100–200 ms from Seow [48] for 
instantaneous interactions is applicable in our case. We measured an 
average latency of less than 160 ms for 95% of all queried points. The 
frustum query relevant for visualization is much lower. This means that 
our visualization can be classified as interactive and real-time capable, 
which meets our goal of real-time visualization (G4).
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Fig. 16. Query comparison by number of time.
Looking at the breakdown of latencies per LOD in Fig.  19, our 
measurements show a slight increase with each LOD. This is due to 
the fact that points have to go through an additional tree level for each 
LOD. The root nodes are displayed very quickly, with 95% of the points 
arriving in less than 98 ms. Each level of detail then takes a little longer, 
with a 95% confidence interval of 221 ms for the highest LOD.

7.3. Scalability and limitations

Point cloud datasets can become massively large, with many ter-
abytes and hundreds of billions of points. To show that our approach 
works for these datasets and does not slow down over time, we also 
15 
measured the maximum possible indexing speed of the airborne AHN 
dataset as indexing progressed, shown in Fig.  20.

The insertion rate achieved during indexing is shown in blue in the 
graph. The actual recording speed of the scanner is shown in red.

Up to about 7 billion points, the points were recorded in evenly 
spaced, slightly overlapping flight lines, resulting in a relatively con-
stant insertion rate. After that, there are crossing lines over existing 
areas (the airplane apparently turned around), which slows down the 
indexing speed considerably as areas that have already been recorded 
have to be reloaded from disk. In the last two billion points, there are 
smaller flight lines that overlap with the previously recorded lines for 
a small section. This is why there are so many variations here.
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Fig. 17. Index sizes of Lidarserv compared to PotreeConverter 2.0.
Fig. 18. Latency comparison for different queries. The horizontal lines show minimum, 95%-percentile and maximum.
Fig. 19. Latency while querying the full point cloud, listed by LODs. The horizontal lines show minimum, 95%-percentile and maximum.
In summary, it can be said that the indexing speed depends on the 
amount of data recorded in the same area and whether the airplane has 
flown over an area several times, but if only new areas are recorded, 
the speed remains constant over time. This means that the indexing is 
scalable to larger datasets linear to the input size.

However, since the attribute index is stored entirely in RAM, there 
are some limitations. The exact size our system can handle depends 
on the point cloud and the number of nodes generated, as attribute 
information is stored for each node. Nevertheless, the amount is very 
16 
small, especially for the area index. The worst case index sizes (in bytes) 
can be calculated as follows:

Range Index: #nodes × (sizeof(attr_type) × 2 + 13byte)

Bin List Index: #nodes × (sizeof(attr_type) × #bins + 30byte)

For the AHN dataset, a total of 3200134 nodes were created. This 
results in the following index sizes:
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Fig. 20. Indexing speed over time for the AHN4 dataset.
• Range Index - Classification (1 byte): 46MiB
• Range Index - Intensity (2 bytes): 52MiB
• Range Index - GpsTime (8 bytes): 89MiB
• Bin List Index - Classification (1 byte): 140MiB

The total size of the attribute indexes is about 327MiB. This is a very 
small amount of RAM compared to the size of the point cloud itself, 
which is several hundred gigabytes. The attribute index can be stored 
in RAM without any problems.

If the indexing speed is insufficient, the points will accumulate in 
the inboxes of the nodes. The inboxes are only stored in RAM, which 
means that a lack of memory could eventually cause a crash. In this 
case the points would be lost. To avoid this, a fallback to disk would 
have to be implemented in the future.

7.3.1. Bin list index
In Section 3.2.2, we introduced two possible index structures to 

accelerate attribute range queries. In this section, we compare the 
performance of the Value Range Index and the Bin List Index and 
discuss the advantages and disadvantages in detail.

To compare both attribute index structures, we took measurements 
with no attribute index, the Value Range Index and the Bin List Index 
(16 bins). For the KITTI dataset, we indexed the classification attribute.

Fig.  21 shows that the attribute indexes have only a small impact on 
the indexing speed. The Value Range Index had no negative impact on 
the point rate at all. We even observed a slightly higher point rate when 
using the Value Range Index compared to using no attribute index. This 
is a surprising result, which we think is caused by slight performance 
fluctuations of the virtual machine that we used for our tests. With the 
Bin List Index, we observed a slowdown of 4.7% compared to the Value 
Range Index.

We tested the query performance of each index structure. We used 
queries of the form attr(semantic == C), where C is one of the classes 
that are present in the KITTI dataset. Fig.  22 shows the number of nodes 
each index returned.

The results demonstrate that both attribute indexes provide better 
performance than without attribute indexing. For the classes with very 
small and very large values (classes 6, 7, 44), both indexes perform 
similar. However, for the classes closer to the middle (especially classes 
10 to 20), the Bin List Index clearly outperforms the Value Range Index.

The same effect also shows in the query times that we observed. 
For queries on the classification attribute, the Bin List Index is almost 
always faster than the Value Range Index. Only if Value Range Index 
and Bin List Index return close to the same number of nodes, the Value 
Range Index is slightly faster.
17 
Fig. 21. Comparison of the impact of the different attribute indexes types on the 
indexing speed.

The Bin List Index was especially designed for attributes where 
the values are not uniformly distributed, like Classification or GpsTime. 
When we tested it with other attributes, we found that it offers no 
benefits over the Value Range Index.

In general, we can name four major differences between the two 
index structures:

• The Bin List Index is superior at filtering the nodes for queries 
on the Classification or GpsTime attributes. This leads to a better 
query performance for these attributes. The Value Range Index 
does not perform well for these non-uniformly distributed at-
tributes, because it only stores the minimum and maximum of 
the values in each node but no details about the distribution of 
values between these bounds.

• The Bin List Index is more complex to compute than the Value 
Range Index. In our measurements, the effect on the point inser-
tion rate was small, but we only indexed a single attribute for 
these tests. When inserting 𝑛 new points into a node, updating the 
Value Range Index takes (𝑛) time. However, our implementation 
for updating the Bin List Index involves sorting the new attribute 
values, which makes our implementation only (𝑛 log 𝑛).

• The Value Range Index is faster when checking a node against a 
query. While the Value Range Index only has to check the queries 
against the value range, the Bin List Index has to check the query 
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Fig. 22. Comparison of the node filtering capabilities of each attribute index type.
against each bin. For Classification and GpsTime, the improved 
node filtering conceals this effect, but for other attributes, this 
added complexity shows in slightly slower query times.

• As shown in Section 7.3, the Value Range Index has a lower 
memory footprint than the Bin List Index.

Therefore, we recommend using the Value Range Index for most 
attributes. The Bin List Index should be used for selected attributes with 
a favorable distribution of attribute values.

8. Conclusion

In this paper, we presented an integrated approach for indexing, 
querying, and visualizing 3D LiDAR point clouds with arbitrary at-
tributes. This process works in real-time, i.e. while the data is being 
recorded. We described our data structure M3NO and its individual 
components. This included details about how points are represented 
in memory as well as on disk with our custom file format. Further, 
we described the indexing process and how querying is performed. 
We also introduced an intuitive query language that can be used to 
interactively filter the indexed data. After presenting the architecture 
for real-time visualization, we evaluated our approach using various 
real-world datasets. This included a comparison of our implementation 
to state-of-the art solutions.

The work presented here was based on previous publications where 
we covered real-time spatial indexing and real-time indexing of arbi-
trary attributes. The integrated approach, the advancements we have 
achieved in our research, and the optimizations we have made in our 
implementation now enable live visualization for the first time. To 
the best of our knowledge, there is no other approach in literature 
that addresses this challenge. Existing works either focus on spatial or 
attribute indexing, only support a limited set of attributes, or do not 
support real-time visualization.

In terms of the research goals we defined in Section 1.1, we were 
able to meet all of them. Our evaluation results show that our approach 
can index points at least as fast as they are recorded by a laser scanner 
(G1). Our data structure M3NO is organized in a way that allows whole 
subtrees of octree nodes to be eliminated early in the query process, 
which reduces the amount of data that needs to be loaded from disk 
(G2). The evaluation results also show that queries on point clouds 
are very fast, even if the dataset is massive. The AHN4 dataset is 
several hundred gigabytes in size and can be filtered based on attributes 
in a few milliseconds (G3). The same applies to view-frustum and 
LOD queries, which are particularly required to be fast to enable live 
visualization. This is evident from the latency measurements, where 
view frustum queries received incoming points after no more than 
31 ms. They prove that our implementation is indeed able to visualize 
18 
large point clouds in real-time and that it can be classified as interactive 
(G4).

We want to specifically highlight that our approach works out 
of core and is therefore able to index arbitrarily large datasets and 
is not limited by the available main memory, as we have shown in 
Section 7.3. Furthermore, the fact that an LOD structure is implicitly 
created enables visualization of arbitrarily large point clouds even on 
devices with limited computing capacity. Only a necessary portion of 
the point cloud needs to be loaded and rendered on screen.

In the future, this will make it possible that operators of mobile 
mapping systems use a device such as a tablet to visualize and query the 
data while it is being recorded. This will enable use cases such as live 
quality assurance, which in turn is expected to save time and money 
as issues in the point clouds can be fixed right away and repeated scan 
jobs can be avoided.

Nevertheless, the evaluation results also show that the performance 
of our approach highly depends on the spatial distribution of the 
attribute values. In Section 7.2.2, differences in the evaluated datasets 
become apparent. Queries for the attributes GPS time or classification
work very well, but the performance varies largely for the intensity
attribute, for example. Our approach works best if the searched points 
lie in a limited number of octree nodes and many subtrees can be 
eliminated as quickly as possible. However, a uniform attribute value 
distribution where almost all octree nodes contain points has a negative 
impact on performance. Designing the M3NO this way was a deliberate 
decision. It can be considered a tradeoff we were prepared to accept 
to be able to implement real-time visualization. Other offline indexing 
approaches are able to achieve better query times and smaller index 
sizes as they have access to the whole dataset and can find an optimized 
indexing strategy, but, because of this, they are of course not real-time 
capable.

In the future, we want to further work on our data structure and 
make it more flexible, especially with regard to real-time modifications. 
At the moment, the index is static and only allows new points to 
be added. Already indexed data cannot be modified without recre-
ating the whole index. Live modifications would be beneficial for 
various use cases. For example, spatial transformations would enable 
real-time simultaneous localization and mapping (SLAM) loop closure. 
Furthermore, downstream processing steps such as colorization or clas-
sification could make use of the index structure and work in parallel to 
the indexing process. The index could be updated in real time as soon 
as their results arrive.

Finally, we will explore the possibilities of graphics processing units 
(GPUs) and how they can be used to further improve the performance 
of our implementation. We expect that making use of massive paral-
lelization will even out the differences between our implementation 
and other offline approaches or even surpass their performance.
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In summary, we consider our work a major step with a high impact 
on practical applications and the scientific community. For the first 
time, real-time visualizations of 3D LiDAR point clouds while they are 
being recorded are possible. At the same time, our results open up new 
possibilities for further research.
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