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Abstract—We present Grid-Shift, a lightweight image pre-
processing approach to counteract overfitting when training
Convolutional Neural Networks. Grid-Shift solves the problem
that tiling large images for training disrupts coherent features
(i.e. an object may be split at the edge of a sub-image) and thus
leads to information loss. Existing augmentation methods that
reduce overfitting do not solve this problem explicitly. In our
case study of Land Use and Land Cover Classification, Grid-Shift
outperforms all other approaches tested (a raw UNet, a UNet with
Batch Normalization, and various augmentation methods). Grid-
Shift achieves a Categorical Accuracy of 95%, which is almost
20% better than a raw UNet and still 4% better than the best
augmentation approach tested.

Index Terms—Convolutional Neural Networks, Computer Vi-
sion, Data Augmentation, Image Processing, Remote Sensing
Data

I. INTRODUCTION

Artificial Intelligence (Al) technology has become increas-
ingly popular in recent years. A McKinsey Global Survey
on Al shows that in 2022, 50% of the surveyed companies
integrate Al technologies in at least one application area. In
2017, it was just 20% [1]].

Al can be found in many areas of our daily lives. Important
applications include the analysis of medical image data [2],
environmental recognition for self-driving cars [3l], or the
analysis of aerial images for agriculture [4]. Deep Neural
Networks (Deep NNs) are particularly popular, as they are
very powerful and make it possible to recognise well-trained
facts automatically and reliably.

Despite its popularity, a major problem with supervised
learning is the availability of training data [S]. Firstly, ground
truth data is usually rare, but a large amount of it is needed
to obtain good results. At the same time, manual labelling is
time-consuming and expensive. Further, images typically have
to be converted to a resolution specified by the used network
(and hardware), which is usually done by tiling the images
into smaller sub-images. This causes the problem that objects
at the border are sometimes split, which means information is
lost.

For this reason, our paper deals with the question of how
to best use the limited data available for training. The goal is
to reduce overfitting. Our focus is on Earth Observation data
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and the investigated use case is Land Use and Land Cover
Classification (LULC), although our approach can be applied
to all computer vision tasks where tiling of the original images
is required.

In this paper, we describe and evaluate an image prepro-
cessing approach, which we named Grid-Shift. The approach
is intended to counteract the loss of information at the border
of training samples. Grid-Shift is a lightweight scheme, in
which adjacent samples are combined to create a new training
sample. Although we have seen the approach of overlapping
tiles for training Al applications in several papers ([6], [7],
(8], [9], [10]]), none of them explicitly focus on it. To the best
of our knowledge, a standardized terminology for this method
and a detailed evaluation are missing in literature. In the same
manner, the Grid-Shift approach is never explicitly described
as an augmentation strategy. We close this gap with our work.

This paper is structured as follows: We first discuss relevant
work aiming to avoid overfitting. We then explain the basic
idea of Grid-Shift and describe the implementation as well as
the evaluation setup. Subsequently, we compare the accuracy
of Grid-Shift to existing approaches. The paper finishes with
a discussion and conclusion.

II. RELATED WORK

A common problem in training neural networks is the small
amount of labelled data [S]. Given the good generalization
ability of Deep NNs, lack of data can lead to overfitting.
As summarized by Hao et al. [[11], there are currently two
overarching approaches to counteract this problem. One is a
network-based approach adapting the model architecture. The
other is a data-based approach through augmenting images.

A. Model Architecture Adaptation

One way to avoid overfitting is to utilize network-based
approaches. Here, the network structure is stabilized in order
to better deal with noise and non-linearities. The best known
methods are Dropout [12] and Batch Normalization [13].
Dropout randomly removes neurons—including all inputs and
outputs. This way, the network learns more robust features,
which prevents overfitting. Batch Normalization normalizes
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the layer inputs. This allows for better handling of non-
linearities. According to loffe and Szegedy, this often elim-
inates the need for Dropout [[13]].

With the goal of counteracting the loss of information at
the border of image subsamples, several works have focused
on exploiting neighbourhood information [14], [15]. Fu et al.
[15] extended the DeepLabV3+ architecture [16] with an extra
context attention module that combines atrous convolutions
and a spatial attention module based on a non-local block
[17] on all eight neighbouring samples to produce a feature
map. Niloy et al. [[14] used a spatial attention mechanism that
is not based on a non-local block. Their proposed mechanism
captures dependencies between neighbouring samples through
a series of convolutions and combinations with the image that
is currently segmented. Both works achieved minor improve-
ments in their respective metrics.

B. Data Augmentation

Another common way to avoid overfitting is to apply
data augmentation. In recent years, there has been a lot of
work on the topic of image data augmentation [18]], [19],
[L1]. According to Hao et al. [11], data based augmentation
methods can be separated into One-Sample Transformation,
Multi-Sample Synthesis, Deep Generative Models, and Virtual
Sample Generation. One-Sample Transformation has been
used extensively so far [20]]. The reason for its popularity is its
simple nature, as it only consists of geometric transformations,
sharpness transformations, noise disturbances, and random
erase methods. Often, multiple One-Sample Transformations
are used in conjunction [21]], [22], [23]. Additionally, Wang
et al. have shown that multiple transformations achieve the
best network accuracy for object detection tasks (e.g. the
“dog vs. cat” classification) [24]. Taylor and Nitschke have
compared different One-Sample Transformations and noticed
that cropping gives the best improvement [25]. Since cropping
uses only a subsample of the (sub-)sample, further information
is lost and the training image resolution changes. Therefore,
we focus on a modified approach that we have named Grid-
Shift, which is actually more comparable to Multi-Sample
Synthesis methods.

Multi-Sample Synthesis methods generate new data by
combining multiple samples. Known algorithms are Mixup,
[26] where samples are interpolated to obtain a new sample,
and BC [27], where a neural network is trained to output a
mixture ratio for a given mixture of samples with different
labels. In addition, in CutMix [28]] new samples are created
by removing a part of the image and replacing it with a
part from another image. These algorithms belong to linear
stacking methods.

Furthermore, there are so-called non-linear blending meth-
ods in many variations [11l]. Here, a coefficient A influences
how samples are combined. In the case of Vertical or Hori-
zontal Concat, A is a ratio determining how much of a given
sample is used when creating a new sample while 1 — A
determines how much of the second sample is used. Takahashi
et al. have already shown that non-linear blending methods are

superior to linear stacking methods [29]]. Nevertheless, Hao
et al. remark that non-linear blending methods “lack inter-
pretability” [[11]. Grid-Shift uses neighbouring samples, which
alleviates this problem by creating realistic and interpretable
images. At the same time, the lost information at the border
of image subsamples is recovered.

This general idea of Grid-Shift is already known. However,
to the best of our knowledge, the approach has not been given
a name before and has not been evaluated in detail. Reina
et al. [10] address the tiling of images for deep semantic
segmentation. They compare the accuracy of different tile
sizes. They also mention that overlapping tiles are commonly
used, but do not elaborate on this. Huang et al. [9], on the
other hand, deal with the merging of tiles towards the overall
image. Here, as well, the overlapping tiles are named as a
tiling strategy, but it is also not discussed in detail.

Cira et al. [8] compare the influence of different tile sizes
and overlapping tiles in training. They perform a comparison
of the accuracy of training without overlapping tiles and with
an overlap of 12.5% and find that overlapping tiles provide
better results. But an exact comparison of different overlaps
and classical augmentation methods is not available.

Other similar works are by An et al. [6] and Bullinger et
al. [7]. Both papers deal with the complete pipeline of tiling
and merging. The lack of standardized terminology becomes
clear in the paper of Bullinger et al. [7], as they do not
explicitly speak of an overlap in A-percent, but of a “stride
size x-times < the tile size”. They show that this generates a
larger amount of training data, resulting in better accuracy.
Nevertheless, a detailed comparison (e.g. different overlap
proportions, different number of new tiles, detailed comparison
to classical augmentation) on this approach is also missing. An
et al. [6] compare training with 50% overlapping tiles with
no overlapping tiles. They show, that the results with overlap
are better, but comparisons of different overlaps and classic
augmentation methods are also missing here.

Summarizing, this shows the potential of Grid-Shift, but also
the need for standardized terminology and detailed evaluation.
In addition, the Grid-Shift approach is not explicitly described
as an augmentation strategy anywhere in literature. We aim to
close this gap with our paper.

III. MATERIAL AND METHODS

Grid-Shift is a data-based approach, which generates new
samples by combining neighbouring samples. The approach
as well as the test environment were implemented with Keras
[30] and the TensorFlow [31] backend. We used the classic
UNet [32] as the underlying CNN, since it achieved the best
results in our previous experiments when segmenting Earth
Observation data [33]].

A. General Idea

Grid-Shift is motivated by the fact that large images are
often tiled into smaller samples for training to match the
image resolution required by the used network. Since labelled
training data is rare, it is particularly important to maximally



Fig. 1: The general motivation for Grid-Shift

exploit the information from the available data. However,
image tiling can lead to information loss. This can be seen
in Figure [I] where a car has been split into two parts at the
border of the image sample. In the image on the left, it is not
visible what kind of object it is. Therefore, it is very difficult
for the network to extract meaningful features. If only a part
of the neighbouring image is added, as it has been done in the
image on the right, it becomes obvious that the object is a car.
Exactly this is the basic idea behind Grid-Shift. By shifting
the grid cells, information is restored to the edges of the image
that was previously lost during tilling.

There are existing non-linear blending methods, where par-
tial images are put together to a new one. Nevertheless, these
are not explicitly spatially neighbouring images but arbitrary
ones, which can lead to random results. For this reason, Hao
et al. also criticizes them [11]]. Grid-Shift, on the other hand,
only uses spatially neighbouring images.

B. Grid-Shift

The name Grid-Shift explains the functionality of our ap-
proach very well. Tiling the original large image into smaller
ones creates a regular grid of image samples. Grid-Shift
generates additional samples by using further regular grids
that are shifted in relation to the initial grid. The grid can be
moved by
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where A, and )\, correspond to the cell size of the grid (i.e.
the size of a sample) in the x and y direction, g — 1 is the
number of shifts that are performed per tile and ¢ is the id
of the current shift. Thus, a new sample always consists of a
fraction ; ;
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in each x and y direction of two adjacent initial ones. This
is illustrated in Figure 2] In Section [[V] we compare g €
1,2,3,4.

Existing non-linear blending methods can lead to unrealistic
and uninterpretable merged images [11]]. By moving the whole
regular grid, on the other hand, the new subsamples are still
parts of the actual image. Furthermore, the samples generated
with this method regain the information that was lost during
tiling.

Fig. 2: A visual representation of Grid-Shift: The generation
of new samples (red) from the initial samples (blue).

Also, the major drawback of classic cropping is eliminated.
Instead of a further loss of information by cropping the border
areas of the image out of the visible field, lost information is
added to the database for training. However, it has to be noted
that this approach is limited to spatially contiguous samples,
i.e. when samples are generated from a large image, as is often
the case when using remote sensing data.

C. Evaluation Setup

Besides a raw UNet, we also compare our approach to Batch
Normalization and data augmentation, currently the most pop-
ular ways to counteract overfitting. For the augmentation, we
use One-Sample Transformation methods. Here, we generate
up to 15 new samples per sample in the different test cases.
We randomly applied a random number of 1-3 of the following
geometric transformations.

o Horizontal and Vertical Flip

« Rotation

e X and Y Scale

e Crop

Each configuration of the study was trained and evaluated
with the ISPRS Potsdam dataset [34]. This dataset can be
used freely for research purposes. It consists of orthophotos
with R, G, B, and IR channels, as well as matching labelled
ground truth images. The sampling distance of one pixel is 5
centimetres.



We created samples with a resolution of 224 x 224 pixels.
This resulted in 25688 samples. Additionally, the colour
values of all image samples were normalized. The ratio
between training and evaluation data was %% We classified
the following six classes:

o impervious surfaces
« building

« low vegetation

o tree

e car

« clutter/background

As evaluation metrics, we used Categorical Accuracy as well
as one hot mean Intersection over Union (IoU).

To avoid distortions of the results due to unfavourable
hyperparameters, we performed hyperparameter tuning for
each configuration. This applies to Grid-Shift as well as all
other state-of-the-art methods we compare to. For this, we used
KerasTuner with the Hyperband algorithm [35]]. The search
space was defined as follows:

e Learning rate: 0.1, 0.01, 0.001, 0.0001, 0.00001,
0.000001

o Loss: Categorical CrossEntropy, Sigmoid Focal CrossEn-
tropy, Jaccard Distance

o Start filter size: 8, 16

o Optimizer: Adam, Gradient Descent

IV. COMPARISON OF RESULTS

In this section, we compare the quality of Grid-Shift with
that of the current state of the art. The results are shown in
Table [l It can be seen that a UNet with Batch Normalization
(BN) gives better results than a raw UNet (UNet). In addition,
data-based approaches achieve significantly better results than
Batch Normalization.

First, we look at the results of the augmentation aug;, where
! denotes how much larger the data set is compared to the
original data set. The best accuracy of 0.91 and an IoU of 0.79
was achieved with augig, i.e. with 15 additional augmented
images per sample.

The results of Grid-Shift are labelled gs, 4, where g denotes
by how much the grid is shifted (see Figure 2). d indicates
whether only horizontal (h), vertical (v), or both (a) directions
were shifted. Thus, gs4 , means that the grid was shifted three
times by i in each direction (i.e. horizontally and vertically).
This setting produced the best results with a Categorical
Accuracy of 0.95 and an IoU of 0.87.

Compared to a raw UNet, the IoU is almost 0.2 better.
When comparing to classical augmentation methods, it is
additionally noticeable that Grid-Shift already provides very
good results with significantly less generated samples. If we
compare gsp, (four times the number of original samples)
with augy¢ (sixteen times the number), we see the accuracies
are around 0.9, but Grid-Shift needs 4 times less data and
correspondingly less time for training to achieve this result.
With the same number of data, it is also visible that Grid-
Shift always performs better than augmentation.

TABLE I: Evaluation results. The acronyms mean the follow-
ing: UNet = raw UNet; BN = UNet with Batch Normalization;
aug; = UNet trained with augmented dataset, where the new
dataset is [ times larger; gsyq = UNet trained with Grid-
Shift dataset, where g denotes how much (1) the grid was
moved and how often (¢ — 1), and d denotes the direction (v
= vertical, h = horizontal, a = vertical and horizontal). The
bold entry highlights the best result, namely Grid-Shift with
g = 4, moved in vertical and horizontal direction.

Modell | Acc. | IoU
UNet 0.84 | 0.68
BN 0.85 | 0.69
augs 0.85 0.69
augs 0.86 | 0.70
auga 0.86 | 0.70
augg 0.89 0.75
augie 0.91 0.79
g82,a 0.90 | 0.79
gs2,v 0.87 | 0.72
gs2,h 0.87 | 0.72
953,a 092 | 0.83
9530 0.89 | 0.75
gs3,h 0.89 | 0.75
gS4,a 0.95 | 0.87
9540 091 | 0.80
gsa.h 091 | 0.80

Visual examples of the predictions can be seen in Figures
[ and {i] Subfigures (a) and (b) show tiled orthophotos and
the corresponding ground truth images respectively. In (c),
the UNet trained with Grid-Shift (gs4,,) was applied, while
(d) shows the UNet with augmented data (augig). In both
examples, it can be seen that Grid-Shift leads to improved
results. The edges of individual classes are detected much
more sharply. Also, the confidence in class detection is higher,
and the classification produces less false positives, as is the
case in (d).

V. DISCUSSION AND CONCLUSION

With this paper, we were addressing the problem of over-
fitting during the training of CNNs. For this purpose, we
introduced a data-based approach, which we named Grid-Shift.
It is an alternative way to the classical augmentation. Here,
for large images, the samples used to train the CNN are not
simply generated by tiling the original image in a regular grid
but by additional shifting (as seen in Figure 2)). This approach
is designed to recover information lost during image tiling.

We compared Grid-Shift to state-of-the-art approaches aim-
ing to counteract overfitting: image augmentation as well as
a network with and without Batch Normalization. The results
clearly show that Grid-Shift outperforms all other approaches.
A Categorical Accuracy of 0.95 was achieved for a Land Use
and Land Cover Classification of the ISPRS Potsdam dataset
[34]. According to “Papers with Code” [36], the best accuracy
ever achieved on this dataset has been 0.94 so far.

However, we must also add two limitations of Grid-Shift
at this point. The approach can only be used for spatially
contiguous images or for large images that have to be tiled
into samples. But if the spatial information is given, there are



(b) Ground truth

(c) Predicted image (Grid-Shift
gs4,a)

(d) Predicted image (Data Aug-
mentation augie)

Fig. 3: First visual comparison of Grid-Shift with ground-truth
data and data augmentation

(a) Orthophoto

(b) Ground truth

N

(d) Predicted image (Data Aug-
mentation augie)

(c) Predicted image (Grid-Shift
9S4,a)

Fig. 4: Second visual comparison of Grid-Shift with ground-
truth data and data augmentation

no restrictions to the used machine learning approach or use
cases.

Due to the required spatial relationship between the images,
there is also a limitation in pre-processing. Grid-Shift must be
applied to all data before training. That means, in addition to
the samples created by tiling the original image, all samples
created by Grid-Shift must also be stored. If only the original
samples should be saved, a spatial index is necessary to be able
to find spatially neighbouring samples. Nevertheless, since
Grid-Shift and augmentation methods are mainly used if you
do not have large amounts of data in the first place, and since
memory is not a limiting factor any longer today, this is not
a significant limitation for us. Additionally, we have shown in
Section [[V] that Grid-Shift can work with less data than other
state-of-the-art methods while maintaining or even improving
quality.
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